Новые и мобильные источники энергии
537 subscribers
1.96K photos
82 videos
1 file
712 links
Официальный канал Центра компетенций НТИ при ИПХФ РАН по новым и мобильным источникам энергии
加入频道
Первый водородный трамвай  и водородная программа Поднебесной

Сегодня мы расскажем о событии, которое произошло почти год назад. 30 декабря 2019 года впервые в мире на пассажирскую линию вышел водородный трамвай. Это случилось в китайском городе Фошань  (в скобках отметим, что в октябре-ноябре того же года водородный  трамвай уже совершал тестовые поездки в нашей стране, в Петербурге, но на линии пока он не вышел).

Место, где был осуществлен проект демонстрационной линии современного трамвая, выбрали не случайно. Фошань - город-префектура в центральной провинции Гуандун, на юге Китая с населением 7,9 миллиона человек. Он является частью экономической зоны дельты Жемчужной реки. Его власти, придавая большое значение созданию энергетических инноваций и ускорению промышленных преобразований, в 2018 году приняли план развития водородной промышленности. Согласно этому документу, к 2030 году Фошань должен превратиться в всемирно известный экогород, использующий водородную энергию, расширяющий ее применение и демонстрирующий использование водорода в различных сферах жизнедеятельности города. К слову, ровно такой путь сейчас мы предлагаем для Черноголовки, где расположен наш Центр.

Стартовая линия трамвая имеет длину 6,9 километров (10 остановок), но в будущем ее собираются продлить до 17,4 километров (20 остановок). Низкопольный трамвай оснащен шестью баллонами с водородом, которые позволяют ему проехать 100 километров, после чего требуется заправка, занимающая 15 минут. Максимальная скорость движения – 75 километров в час, пассажировместимость трамвая – 350 человек.

Этот проект говорит о том, что в Китае всерьез взялись за водородную энергетику и водородную экономику: недаром на 75-й Генеральной ассамблее ООН Си Цзинпин объявил, что Поднебесная достигнет углеродной нейтральности к 2060 году.

Источник: https://meethydrogen.com/hydrogen-tram-the-chinese-way-for-zero-emission-transport/


#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф  #npenergy #нти
Предложен метод получения водорода из воды при помощи микроволн

Исследователи из Валенсии опубликовали в журнале Nature Energy статью, в которой показывают возможность синтеза водорода из воды при помощи микроволн при сравнительно низких температурах (менее 250 градусов Цельсия).

В своей работе авторы приводят разложение воды при помощи нестехиометрически допированного гадолинием диоксида церия под действием микроволн. Микроволновое излучение индуцирует восстановление оксида, который дальше отрывает атом кислорода от низкоэнергетических молекул воды, что приводит к образованию водорода. Исследователи говорят, что такой микроволново-активированный оксид гадолиния-церия (CGO) годится и для каталитического получения водорода из метана.

Источник: https://www.nature.com/articles/s41560-020-00720-6

#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование
"Электромобиль по пятницам": 100-mile Fritchle

Nissan Leaf и Mitsubishi i-MiEV, представленные на рынке в 2010 году, имели примерно такой же запас хода, что и Fritchle Model A Victoria 1908 года: 100 миль (160 километров) на одной зарядке.

Дальность «100-мильного Fritchle» зафиксирована во время гонки на 1800 миль (2900 км) в течение 21 дня зимой 1908 года. Серийный автомобиль ездил в различных погодных условиях, по разному рельефу и в самых разных дорожных условиях (часто по плохим или грязным дорогам). Средний пробег на одном заряде составлял 90 миль, максимальная зафиксированная дальность - 108 миль.

Для статистики:

Электромобили 1894-1900 годов имели запас хода от 20 до 40 миль (от 32 до 64 километров), второе поколение 1901–1910 годов - 50 до 80 миль (от 80 до 130 км). Третье поколение электромобилей 1911-1920 гг.) могло проехать от 75 до более 100 миль (от 120 до более 160 км) на одной зарядке

Картинка из wiki.org

#ипхф  #наука #знания #историянауки #электрохимия #npenergy #нти #центрыкомпетенцийнти #интереснаянаука #ретрофото #ретро #электротранспорт #историятранспорта #электрокар #электроавтомобиль
В Польше создана новая компания по производству водородных автобусов

Польская энергетическая компания Zespół Elektrowni Pątnów-Adamów-Konin SA (ZEPAK SA) объявила о создании дочерней фирмы Polski Autobus Wodorowy, которая, как можно понять из ее названия, будет производить водородные автобусы (и тем самым конкурировать еще с одним польским производителем водородных автобусов, компанией Solaris). По сообщению MeetHydrogen, завод будет построен в Люблине и намерен производить до 500 автобусов в год. К слову, несколько недель назад ZEPAK SA подписала контракт с компанией Nel Hydrogen на поставку электролизеров и водородных заправочных станций.

#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф  #npenergy #нти
Сегодня в нашей рубрике «Электромобиль по пятницам» -  самый большой и при этом еще самый далекий от нас рабочий беспилотный электромобиль.

Вот уже более восьми лет на Марсе трудится Curiosity, крупный ровер размером с седан (вес на Земле – 899 килограммов). Шестиколесный марсоход опустился на Красную планету 6 августа 2012 года (и сразу сделал сэлфи).

Поскольку это уже очень большой электромобиль, солнечных батарей, подобно тем, которые стояли на его предшественниках Spirit и Opportunity, не хватило бы для движения. Поэтому Curiosity снабжен радиоизотопным термогенератором, в котором 4,8 килограмма диоксида плутония-238 нагреваются при распаде, тепло преобразуется в 2,5 кВт*ч электроэнергии ежедневно и заряжает две литий-ионные батареи емкостью в 42 ампер-часа каждая.

Этого хватит, чтобы питать электродвигатели, вращающие шесть колес марсохода на протяжении как минимум 14 лет. И пока что Curiosity уже прожил на Марсе белее 8 лет и прошел по нему более 23 километров.

#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф  #npenergy #нти
Проблемы ионики твердого тела: день первый

Сегодня в ИПХФ РАН стартует 15-е Международное Совещание «Фундаментальные проблемы ионики твердого тела» и IV Школа молодых учёных «Материалы для новых электрохимических источников энергии», которые пройдут при поддержке нашего Центра и участии наших ученых и специалистов.  Конференция и Школа продлятся ровно неделю.

В первый день начнется первая секция Совещания - «Ионные проводники: синтез, структура, свойства и механизмы переноса». Сегодня мы ждем полтора десятка докладов. Председателями секции будут наш руководитель, доктор химических наук Юрий Добровольский и доктор физико-математических наук Александр Укше.  Среди докладчиков – исследователи из Черноголовки, Екатеринбурга, Москвы и Санкт-Петербурга, Гатчины, Махачкалы, Новосибирска и Нур-Султана (Казахстан).

На Школе сегодня – две лекции от наших специалистов. Екатерина Золотухина расскажет, что такое биотопливные элементы и зачем они нужны, а Анатолий Антипов - о гибридных проточных накопителях энергии.

#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф  #npenergy #нти
This media is not supported in your browser
VIEW IN TELEGRAM
Мы продолжаем цикл видеознакомств с разработками нашего Центра.

Сегодня мы расскажем о полностью автоматической системе водородного аккумулирования электроэнергии от возобновляемых источников.

Большинство подобных источников, будь то солнечные панели или ветрогенераторы вырабатывают энергию неравномерно. Например, солнечные панели днем дают избыток энергии, а ночью не работают. Поэтому мы создали систему, в которой излишки вырабатываемой электроэнергии направляются на электролиз воды. Получаемый водород хранится в металлогидридном аккумуляторе, а при малом потоке энергии от ее источника автоматически направляется в водородный топливный элемент для выработки электричества. Система сама решает, когда вырабатывать водород, а когда его тратить.

#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование
Сегодня в рубрике «Электромобиль по пятницам» - редкий экземпляр легкового электротранспорта 1960-х. Не так давно в одном из шведских сараев был обнаружен экземпляр электромобиля Mars II, который выпускался созданной в 1966 году американской компанией Electric Fuel Propulsion Corporation (EFP, сейчас – Apollo Energy System) с 1967 года.

Этот автомобильчик был оснащен свинцово-кобальтовым аккумулятором, мог проехать 146 миль (233 км) на полностью заряженной свежей батарее и развивал мощность в 15 лошадиных сил. Интересно, что электромотор был оснащен ручной четырехступенчатой коробкой передач.

Mars II производился на базе четырехдверного седана Renault R-10. Серия, произведенная в Ферндейле, штат Мичиган, составила 45 машин, которые были проданы по цене в $4800 разным компаниям (например, четыре из них работали в почте США). В 1969 году в коллаборации с Holiday Inns именно на Mars II была создана линия доставки из Чикаго в Дедройт длиной в 300 миль. На пути автомобили заряжались на специальных подстанциях с напряжением в 30 киловольт.

#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф  #npenergy #нти
Сегодня мы хотим показать вам то, что обычно скрыто от глаз обычного человека. Перед вами на первом фото – водородный автомобиль Toyota Mirai второго поколения, о создании которого было объявлено в октябре 2019 года. Но не весь, а лишь его водородная силовая установка. Вы видите баллоны высокого давления с водородом, батарею топливных элементов, литий-ионный аккумулятор и электродвигатель. Второе поколение японского водородного автомобиля обладает увеличенной мощностью и пробегом: 182 лошадиных силы против 153 в первом поколении и 650 километров на полных баках против 502 в первом поколении.

На втором фото - Toyota Mirai первого поколения, если кто-то вдруг не знает, как она выглядит. Кстати, эту самую, пока единственную Mirai в России можно встретить на дорогах подмосковного города Черноголовка :)

#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф  #npenergy #нти
Количество водородных заправок в мире достигло 450

Как сообщает Meet Hydrogen, в мире сейчас функционирует уже 450 водородных заправок. Из них 177 в Европе и целых 133 в Японии. Сообщается также, что уже запланировано к открытию еще 43 станции в Европе. Водородная инфраструктура растет.

Интересно, посчитало ли издание нашу заправку? :)

#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф  #npenergy #нти
Cмоделирована высокоэффективная ячейка литий-ионной микробатареи

Российские ученые построили компьютерную модель электрохимической ячейки литий-ионной микробатареи. Это ячейка маленького размера и низкой стоимости, при этом емкость накопленной энергии батареи в 10 раз больше, чем у аналогичных устройств. Теперь исследователи начали работу по созданию и испытанию экспериментального образца. Статья опубликована в журнале Materials Science and Engineering.

Сотрудники Института высокотемпературной электрохимии Уральского отделения РАН и Уральского федерального университета смоделировали высокоэффективную электрохимическую ячейку литий-ионной батареи. Добиться уникальных свойств удалось за счет использования в качестве анодного элемента двухслойного силицена  (кремниевого аналога графена) на графитовой подложке, а также твердого электролита.

«Отличие нашей работы в том, что мы исследовали не свободностоящий, так называемый “голый” силицен, которому посвящено большинство теоретических научных работ, а ультратонкие подложки, в отдельности от которых силицен в настоящее время получить невозможно. Как подложку для силицена мы использовали множество материалов, в том числе серебро, никель, медь, алюминий. Выяснилось, что наиболее подходящий вариант — графитовая подложка, так как связь между силиценом и графитом достаточно слабая, поэтому графит не оказывает сильного влияния на двумерный кремний, и он во многом сохраняет свойства свободностоящего силицена», — рассказывает руководитель исследовательской группы Александр Галашев.

В сочетании с графитовой подложкой силицен склонен к металлизации. В нем появляется небольшая электронная проводимость, что делает использование силицена в ячейках литий-ионных батареей еще более целесообразным. Еще одно преимущество разработки — ее твердотельная конструкция.

Ученые испытали жидкий и твердый электролит. Особенность жидкого электролита — в его высокой электропроводности, однако при долгой работе батареи в жидком электролите образуются вытянутые цепочки металла, это может привести к короткому замыканию и воспламенению устройства. Электропроводность твердого электролита на один-два порядка меньше, зато он абсолютно безопасен. Более совершенный анод компенсирует пониженную электропроводность электролита.
В целом электропроводность разработанной ячейки оказалась достаточно высокой, ее теоретическая емкость — 3500 мАч/г.


https://www.sciencedirect.com/science/article/abs/pii/S0921510720302257.

#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование
Международная команда исследователей выяснила, что использование сплава палладия и магния (MgPd2) для сорбции водорода значительно эффективнее ранее применяемых методов. Предложенная технология сможет облегчить хранение и перевозку водорода. Статья опубликована в Journal of Alloys and Compounds.

Водородная энергетика — возможный кандидатат на роль экологически чистой энергетики будущего. Наиболее перспективными материалами для хранения водорода являются гидриды (соединения металлов с водородом). Под давлением металлический порошок захватывает водород, а при нагреве газ выходит обратно. Водород в металле перестает быть летучим и произвольно находится между узлами кристаллической решетки. Таким образом, повреждённый сосуд с гидридом металла менее опасен, чем повреждённая емкость со сжатым или сжиженным водородом. Палладий — прекрасный сорбент водорода, однако он не очень удобен из-за дороговизны и огромного веса, поэтому ученые пытаются найти другие сплавы для удешевления технологии.

Ученые из Лейпцигского университета, Института неклассической химии и Института химии растворов имени Г.А. Крестова РАН выяснил, что сорбция водорода реализуется на сплаве магния и палладия, MgPd2, при температурах и давлениях близких к параметрам окружающей среды. Интересной особенностью, является то, что процесс сорбции водорода на сплаве MgPd2 сопровождается значительной деформацией материала. Однако классические модели сорбции водорода на сплавах не учитывают деформационных эффектов. Исследователи предложили модель с учетом деформации, что позволило описать результаты проведенных экспериментов. На основе тщательного термодинамического анализа образования гидрида они показали, что процесс сорбции обратим, что также делает сплав MgPd2 удобным для практического использования.

Впрочем, в статье исследователей ничего не говорится об экономической эффективности сплава для масштабного применения.


Источник: https://www.sciencedirect.com/science/article/abs/pii/S0925838820341463?via%3Dihub


#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование
У нас хотя и не пятница, но заголовок в Independent двухдневной давности впечатлил.

NEVER NEEDS CHARGING :) :) :)

Трехколесный электромобиль с солнечными батареями представил калифорнийский стартап Aptera.

По утверждению производителей, Aptera может проехать до 1600 км на одной зарядке аккумуляторов.

При этом 65 км хода получается благодаря зарядке от солнечных батарей, которыми покрыт корпус авто. Сооснователь стартапа Стив Фармбро  говорит, что также обычная ночная зарядка авто обеспечивает запас хода примерно в 240 км.  (похоже, для заявленного мегапробега заряжать электромобиль нужно дольше, много дольше, чем ночь :) )

Другие технические подробности - полный привод на все три колеса благодаря трем электромоторам общей мощностью 100 кВт и вес в 800 кг.

Несмотря на стоимость в 26 тыс долларов, первая партия Aptera в количестве 330 шт была распродана за сутки, следующая ожидается в 2021.

Видео от производителя: https://youtu.be/HNjUdTJjiNk
Картинка изи Вики.


#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф  #npenergy #нти
Media is too big
VIEW IN TELEGRAM
Этим видео в первый день короткой предновогодней недели коллектив нашего Центра Компетенций НТИ при ИПХФ РАН поздравляет всех коллег и друзей с наступающим Новым Годом!

Давайте сделаем, чтобы наши пожелания увидело как можно больше друзей :)

#нти #центркомпетенцийнти #сновымгодом #поздравление #наука #новыйгод #снаступающим #ученые