Машинное обучение RU
17.5K subscribers
1.42K photos
177 videos
11 files
1.89K links
Все о машинном обучении

админ - @workakkk

@data_analysis_ml - анализ даннных

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram -лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python 📚

@datascienceiot - 📚

РКН: clck.ru/3FmrUw
加入频道
Forwarded from Machinelearning
🌟 ZeroSearch: Обучение языковых моделей поиску без реальных поисковиков.

ZeroSearch — фреймворк на базе RL от Alibaba, который учит языковые модели искать данные, вообще не подключаясь к реальным поисковым системам.

Пайплайн ZeroSearch начинается с тонкой настройки (SFT): модель учат генерировать документы, похожие на вывод реального поисковика. Через промпты вида «создай пять полезных/мусорных документов» LLM осваивает 2 режима: релевантные ответы с правильными фактами и «мусор» с случайной информацией.

Дальше в дело вступает RL. Модель-агент взаимодействует с этим «виртуальным поисковиком»: сначала рассуждает в тегах <think>, затем генерирует поисковые запросы через <search>, а получив смоделированные документы, формирует окончательный ответ в <answer>.

Сквозь весь процесс происходит поэтапное усложнение. В начале тренировки 90% документов чистые, чтобы агент освоил базовую логику. С каждым шагом доля шума растет по специальной формуле: через 200 итераций вероятность получить бесполезный документ увеличивается вчетверо.

Это заставляет модель учиться фильтровать информацию даже в условиях хаоса. Чтобы избежать «смешивания» собственных выводов агента и сгенерированных документов, в градиентах маскируются токены чужих ответов — так фокус остается на улучшении стратегии поиска, а не на подгонке под шум.

На выходе получается автономный агент, который не просто ищет, но и учится когда искать, как формулировать запросы и что игнорировать. И все это без единого реального API, только симуляция и математика.

Итоги экспериментальных тестов выглядят позитивными. На датасете NQ ZeroSearch с моделью Qwen-2.5-7B-Instruct показала 43.24% точности (EM), оставляя позади Search-R1 с его 41.46%, хотя последний использует реальный Google. Для многосложных вопросов в HotpotQA разрыв еще заметнее: 29.21% против 34.55% у конкурента.

Но главное, 14B-версия модели превосходит живой поисковик по среднему показателю на 33.97% против 32.47% у Google. Интересно еще и то, как масштаб влияет на результат: 3B модель дает 33.97% точности, 7B — 38.61%, а 14B — уже 40.54%.

▶️ На Huggingface опубликованы Simulation модели c 3, 7 и 14 млрд. параметров, заточенные под имитацию работы поисковых систем для фреймворка ZeroSearch. Их назначение - генерировать документы двух типов:

🟢Релевантные (содержат точные ответы на запросы);

🟠Зашумленные (включают нерелевантный текст, ошибки или отвлеченные факты).

⚠️ В промпте к этим моделям необходимо добавить метки [useful] или [noisy] . В инференсе модель возвращает 5 документов заданного типа.

🔜 Готовые модели на базе Qwen2.5 и Llama2.5 с ZeroSearch доступны в этой коллекции


🟡Arxiv
🟡Датасет
🟡Набор Simulation моделей
🟡Коллекция обученных моделей
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #ZeroSearch #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍2🔥2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🔥 Alibaba представили новую модель - Wan2.1-VACE: универсальную модель для создания и редактирования видео.

Что умеет Wan2.1-VACE:
🟢 R2V — генерация видео по ссылке-примере (Reference-to-Video)
🟢 V2V — редактирование видео по видео (Video-to-Video)
🟢 MV2V — редактирование замаскированных областей видео (Masked Video-to-Video)

💡 Эти возможности можно свободно комбинировать, выполняя сложные креативные задачи.

🔍 Ключевые особенности:
SOTA-производительность: Wan2.1 стабильно превосходит существующие open-source модели и даже коммерческие решения уровня state-of-the-art в ряде бенчмарков.

Работает на обычных видеокартах: Модель T2V-1.3B требует всего 8.19 ГБ видеопамяти, что делает её совместимой почти со всеми пользовательскими GPU. Например, на RTX 4090 она генерирует 5-секундное видео 480P примерно за 4 минуты (без оптимизаций, таких как квантизация). Её производительность сопоставима с некоторыми закрытыми моделями.

Мультизадачность: Wan2.1 демонстрирует хорошие результаты в задачах текст-в-видео, изображение-в-видео, видеомонтаж, текст-в-изображение и видео-в-аудио, продвигая границы генерации видео..

Модель способна выдавать 1080P в теории любой длины, при этом сохраняя временную структуру.

- Размер модели: 1.3B и 14B
- Лицензия: Apache-2.

🔜 GitHub: github.com/Wan-Video/Wan2.1
🔜 HuggingFace: huggingface.co/Wan-AI
🔜 ModelScope: modelscope.cn/organization/Wan-Al
🔜 API сервис: bailian.console.alibabacloud.com

@ai_machinelearning_big_data


#Alibaba #wan #videogeneration
Please open Telegram to view this post
VIEW IN TELEGRAM
👍32