Machine learning Interview
23.7K subscribers
968 photos
59 videos
12 files
642 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
加入频道
Forwarded from Machinelearning
🌟 CUTLASS Tutorial: Быстрое матричное умножение с WGMMA на GPU NVIDIA Hopper.

Большой, подробный и лаконичный туториал в 2-х частях по оптимизации матричного умножения на микроархитектуре Hopper (H100) с использованием библиотеки CUTLASS.

CUTLASS - это набор реализаций алгоритмов линейной алгебры (шаблонов) для использования на CUDA в задачах глубокого обучения, инженерных расчетах и научных исследованиях.

▶️Первая часть посвящена инструкции WGMMA (asynchronous warpgroup matrix-multiply and accumulate) - как она работает, какие ограничения имеет на размер и расположение данных в памяти и как использовать синхронизацию для правильного выполнения операций.

В этой части подробно рассматривается концепция «ядерных матриц» и «матричных дескрипторов», которые нужны для эффективной работы с WGMMA.

✔️ Вторая часть про умножение матриц(GEMM) и методы повышения эффективности GEMM-ядра путем конвейеризации. Рассматриваются две стратегии пайплайна : многоступенчатую и warp-specialization, с подробным описанием их концепции, применением CUTLASS для их построения и сравнивается производительность стратегий.

В конце туториала кратко описывается реализация конвейеризации в GEMM-ядрах для архитектуры Ampere.


@ai_machinelearning_big_data

#AI #ML #CUTLASS #Tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
📌 Практические упражнения и дополнительные материалы к книге "Build a Large Language Model (From Scratch)"

Репозиторий на Github c прикладными упражнениями, ноутбуками с кодом для разработки, предварительной подготовки и тонкой настройке LLM-модели типа GPT по одной из лучших книг о построении LLM с нуля.

▶️ О книге:
В книге вы узнаете и поймете, как работают большие языковые модели изнутри, создавая собственную LLM шаг за шагом, c подробным объяснением каждого этапа понятным языком, диаграммами и примерами.

Метод, описанный в книге демонстрирует подход, используемый при создании крупных фундаментальных моделей, таких как те, что лежат в основе ChatGPT.

В репозитории к каждой главе книги соответствуют несколько (3-4) прикладных примеров в формате ipynb или в виде исполняемого python-скрипта. Код ориентирован на широкую аудиторию, разработан для запуска на обычных ноутбуках и не требует специализированного оборудования.

▶️Главная ценность репозитория - дополнительные практические материалы, которые помогут глубже изучить тонкости и нюансы процесса настройки и обучения LLM:

Настройка

🟢Советы на настройке Python
🟢Установка пакетов и библиотек Python
🟢Руководство по настройке среды Docker

Глава 2: Работа с текстовыми данными

🟠Сравнение различных реализаций Byte Pair Encoding (BPE)
🟠Понимание разницы между embedding и линейными слоями
🟠Dataloader Intuition с простыми числами

Глава 3: Код механизмов внимания

🟢Сравнение эффективных реализаций Multi-Head Attention
🟢Буферы PyTorch

Глава 4: Реализация модели GPT с нуля

🟠Анализ FLOPS

Глава 5: Предварительное обучение на немаркированных данных

🟢Альтернативная загрузка весов с HuggingFace с использованием Transformers
🟢Предварительное обучение GPT на наборе данных проекта Gutenberg
🟢Добавление дополнительных функций в цикл обучения
🟢Оптимизация гиперпараметров для предварительного обучения
🟢Создание пользовательского интерфейса для взаимодействия с LLM
🟢Преобразование GPT в Llama
🟢Llama 3.2 с нуля
🟢Memory-efficient загрузка модели

Глава 6: Тонкая настройка для классификации

🟠Дополнительные эксперименты по точной настройке различных слоев и использованию более крупных моделей
🟠Тонкая настройка различных моделей на основе датасета обзоров фильмов IMDB объемом 50 тыс. строк.
🟠Создание пользовательского интерфейса для взаимодействия с классификатором спама на основе GPT

Глава 7: Тонкая настройка для следования инструкциям

🟢Утилиты набора данных для поиска близких дубликатов и создания записей в пассивном залоге
🟢Оценка ответов на инструкции с использованием API OpenAI и Ollama
🟢Создание датасета для точной настройки инструкций
🟢Улучшение набора данных для точной настройки инструкций
🟢Создание набора данных предпочтений с помощью Llama 3.1 70B и Ollama
🟢DPO для процедуры LLM Alignment
🟢Создание пользовательского интерфейса для взаимодействия с моделью GPT с тонкой настройкой инструкций


🖥Github


@ai_machinelearning_big_data

#AI #ML #LLM #Tutorial #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Cuda-120-Days-Challenge

Гайд 120-дневной программы обучения CUDA для всех, кто хочет углубиться в программирование на GPU.

Это структурированный, ежедневный план, охватывающий потоки, управление памятью, параллелизм и отладку и многое другое.

Урок на каждый день включает в себя:
- Разбор основной темы занятии
- Практическое упражнение / мини-проект
Разбор ошибок при отладке кода
- Рекомендованные ресурсы

Github
CUDA C Programming Guide
CUDA Toolkit Reference
CUDA Best Practices Guide
Бесплатный 12-ти часовой курс по CUDA от freeCodeCamp

@machinelearning_interview - материалы для мл собеса

#cuda #nvidia #freecourse #opensource #tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
📌 Практическое руководство по "подводным камням" больших языковых моделей с примерами.

Открытый препринт книги Тарсиса Соуза (Tharsis Souza), PhD Лондонсого университета, в которой представлен критический анализ проблем и ограничений, возникающих у инженеров и руководителей технических проектов при разработке приложений на основе LLM.

Цель книги, по заявлению автора – помочь создавать надежные и безопасные системы на основе LLM, избегая распространенных ошибок.

Она ориентирована на разработчиков, технических менеджеров проектов и технических руководителей, стремящихся к углубленному пониманию и преодолению практических трудностей, связанных с внедрением LLM.

В отличие от преобладающего дискурса, акцентирующего возможности LLM, книга сосредоточена на практических сложностях и потенциальных ошибках реализации, предлагая подробное руководство по их преодолению.

В книге рассматриваются проблемы: структурной ненадежности, управления входными данными, тестирования, аспектов безопасности и элайнмента, зависимости от поставщиков и оптимизации затрат.

Книга сопровождается репозиторием с практическими примерами на Python, анализом реальных сценариев и решений.

▶️ Содержание:

🟢Предисловие
🟢О книге
🟢Глава 1: Пробелы в оценках
🟢Глава 2: Структурированный вывод
🟢Глава 3: Управление входными данными
🟢Глава 4: Безопасность
🟢Глава 5: Элайнмент на основе предпочтений
🟢Глава 6: Локальные модели на практике
🟠Глава 7: Парадокс снижения стоимости (не опубликовано)
🟠Глава 8: Границы (не опубликовано)
🟠Приложение: Инструменты и ресурсы (не опубликовано)

🟡Страница проекта
🖥Github.com


@ai_machinelearning_big_data

#AI #ML #LLM #Book #Tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM