Друзья! Напоминаю Вам, что сейчас идёт первый турнир нового сезона Квантландия с интерактивными задачами и головоломками. Важно: лучше проходить с ноутбука (не смартфона) и при регистрации на турнир на сайте https://math.kvantland.com/ использовать не gmail-почту, а альтернативную (yandex, mail,…), так как на gmail часто не приходит подтверждение регистрации. Участие бесплатное, по итогам сезона мы наградим победителей!
О том, как это выглядит, показано в коротком обзоре предыдущего турнира (ссылка ниже). Заодно разобрали сложную задачу из этого турнира, вот эту https://yangx.top/kvantland/528 Обязательно участвуйте и рассказывайте о нас друзьям! Ссылки на видео здесь:
Vk-video: https://vkvideo.ru/video-223907838_456239082
Youtube: https://youtu.be/RHqVfgc4ZaI
А какая задача из предыдущего турнира Вам понравилась больше всего? Пишите в комментариях!
#Видеоразборы #Новости
О том, как это выглядит, показано в коротком обзоре предыдущего турнира (ссылка ниже). Заодно разобрали сложную задачу из этого турнира, вот эту https://yangx.top/kvantland/528 Обязательно участвуйте и рассказывайте о нас друзьям! Ссылки на видео здесь:
Vk-video: https://vkvideo.ru/video-223907838_456239082
Youtube: https://youtu.be/RHqVfgc4ZaI
А какая задача из предыдущего турнира Вам понравилась больше всего? Пишите в комментариях!
#Видеоразборы #Новости
Поздравляю с первым днём весны! А ещё сейчас идёт Масленичная неделя. Я очень люблю блины и даже задачку про блины придумал:) Именно эта задача была в книге “Сто граней математики”. Узнать ответ можно по кнопке “Лампочка” после выбора одного из вариантов в анонимном опросе ниже. Если вы тоже любите блины, то обязательно поставьте 🔥:)
Мама пекла блины к празднику. Через какое-то время на кухню пришли отец и два сына и стали поедать блины, которые закончились через полчаса (мама при этом продолжала печь блины). Если бы пришли лишь два сына, то блины закончились через час. Когда бы закончились блины, если пришёл лишь папа (скорость поедания блинов у всех троих одинакова)?
#УтренняяРазминка #СтоГранейМатематики
Мама пекла блины к празднику. Через какое-то время на кухню пришли отец и два сына и стали поедать блины, которые закончились через полчаса (мама при этом продолжала печь блины). Если бы пришли лишь два сына, то блины закончились через час. Когда бы закончились блины, если пришёл лишь папа (скорость поедания блинов у всех троих одинакова)?
#УтренняяРазминка #СтоГранейМатематики
Когда бы закончились блины, если пришёл лишь папа?
Anonymous Quiz
32%
Через 1,5 часа
16%
Через 2 часа
6%
Через 2,5 часа
4%
Через 3 часа
42%
Никогда
Друзья! На днях наткнулся на канал с авторскими головоломками и вопросами в стиле "Что? Где? Когда?" Умный канал. Мне больше всего понравились вопросы “Какое назначение у предмета?” Вот один из них:
Посмотрите на фото. Таких конструкций на улицах европейских и американских городов раньше было немало, сейчас же сохранились единицы. Для чего они использовались?
Ответы пишите в комментариях, но не забывайте их скрывать (оборачивать в Spoiler). А если Вы знаете другие подобные каналы, которые вам нравятся, то обязательно поделитесь в комментариях.
Подписаться на Умный канал
#ЗадачиИзЖизни
Посмотрите на фото. Таких конструкций на улицах европейских и американских городов раньше было немало, сейчас же сохранились единицы. Для чего они использовались?
Ответы пишите в комментариях, но не забывайте их скрывать (оборачивать в Spoiler). А если Вы знаете другие подобные каналы, которые вам нравятся, то обязательно поделитесь в комментариях.
Подписаться на Умный канал
#ЗадачиИзЖизни
“Три человека с холодильником”
Сегодня в качестве утренней разминки забавная задачка для любого возраста (автор Д. Шаповалов, а не А. Шаповалов:)).
Три человека с холодильником хотят переправиться через реку. Лодка вмещает либо двух человек и холодильник, либо трёх человек. Беда в том, что холодильник тяжёлый, поэтому погрузить его в лодку и вытащить из неё можно только втроём. Смогут ли они все переправиться и переправить холодильник на другой берег?
Кажется, что это невозможно, но … Осталось понять, зачем понадобилось перевозить холодильник таким странным способом:) Кстати, узнаёте фильм)?
#УтренняяРазминка #Логика
Сегодня в качестве утренней разминки забавная задачка для любого возраста (автор Д. Шаповалов, а не А. Шаповалов:)).
Три человека с холодильником хотят переправиться через реку. Лодка вмещает либо двух человек и холодильник, либо трёх человек. Беда в том, что холодильник тяжёлый, поэтому погрузить его в лодку и вытащить из неё можно только втроём. Смогут ли они все переправиться и переправить холодильник на другой берег?
Кажется, что это невозможно, но … Осталось понять, зачем понадобилось перевозить холодильник таким странным способом:) Кстати, узнаёте фильм)?
#УтренняяРазминка #Логика
Сегодня непростая задачка, которую я когда-то придумал. Она была на устном туре Турнира Городов в 2018 году. А совсем недавно наш художник сделал для неё прекрасную иллюстрацию! Узнать правильный ответ можно по кнопке “Лампочка” после голосования за свой вариант в анонимном опросе ниже.
16 карточек с целыми числами от 1 до 16 разложены лицевой стороной вниз в виде таблицы 4×4 так, что карточки, на которых записаны соседние числа, лежат рядом (соседние по стороне). Какое наименьшее число карточек нужно одновременно перевернуть, чтобы наверняка определить местоположение всех чисел (как бы ни были разложены карточки)?
#Игры #Логика
16 карточек с целыми числами от 1 до 16 разложены лицевой стороной вниз в виде таблицы 4×4 так, что карточки, на которых записаны соседние числа, лежат рядом (соседние по стороне). Какое наименьшее число карточек нужно одновременно перевернуть, чтобы наверняка определить местоположение всех чисел (как бы ни были разложены карточки)?
#Игры #Логика
Какое наименьшее число карточек нужно одновременно перевернуть, чтобы наверняка определить местоположение всех чисел (как бы ни были разложены карточки)?
Anonymous Quiz
34%
4
22%
6
32%
8
5%
10
7%
Другой ответ
Please open Telegram to view this post
VIEW IN TELEGRAM
Сегодня в качестве утренней разминки забавная задачка-картинка для любого возраста из журнала Квантик. Покажите её своим младшим братьям и сёстрам. Кто из Вас смог справиться? Не торопитесь, задача сложная:)
Обитатели Луны хранят ртуть в подлунных хранилищах, состоящих из нескольких баков, соединённых между собой трубками. На иллюстрации они медленно наполняют пустое хранилище. Какой бак наполнится первым? Вторым? Третьим?
#УтренняяРазминка #ЗадачиКартинки
Обитатели Луны хранят ртуть в подлунных хранилищах, состоящих из нескольких баков, соединённых между собой трубками. На иллюстрации они медленно наполняют пустое хранилище. Какой бак наполнится первым? Вторым? Третьим?
#УтренняяРазминка #ЗадачиКартинки
Please open Telegram to view this post
VIEW IN TELEGRAM
Геометрия на клетчатой бумаге это здОрово! Автор олимпиадных задач, учитель математики школы “Летово” и создатель проекта “Беседы” Дмитрий Викторович Швецов провёл короткую интерактивную лекцию для детей и взрослых на Фестивале Квантика.
Youtube: https://youtu.be/2SRpIZ8qAS8
VK-video: https://vk.com/video-223907838_456239083
Одна из красивых задач с этой лекции была такой:
У вас есть клетчатый лист бумаги со стороной клетки 1 и линейка. Как построить квадрат площади 4/5?
Решения присылайте в комментариях, но не забывайте их скрывать!
#ГеометрияДляВсех #Видеоразборы
Youtube: https://youtu.be/2SRpIZ8qAS8
VK-video: https://vk.com/video-223907838_456239083
Одна из красивых задач с этой лекции была такой:
У вас есть клетчатый лист бумаги со стороной клетки 1 и линейка. Как построить квадрат площади 4/5?
Решения присылайте в комментариях, но не забывайте их скрывать!
#ГеометрияДляВсех #Видеоразборы
YouTube
Геометрия на клеточках | Фестиваль Квантика
Сайт: https://kvantland.com/
Телеграм-канал: https://yangx.top/kvantland
Группа ВК: https://vk.com/kvantland
Телеграм-канал: https://yangx.top/kvantland
Группа ВК: https://vk.com/kvantland
С 3 по 6 апреля наши хорошие знакомые из Школково делают турнир математических игр для 4-7 классов в Республике Татарстан, г. Набережные Челны. Уверен, что будет интересно! Подробности здесь А сегодня одна забавная задачка с игры Матдебют. Внимание! Решать нужно в уме.
У маленького Стёпы есть 125 игральных кубиков. На гранях кубиков написаны числа от 1 до 6. Напротив числа 1 стоит число 6, напротив 2 — 5, напротив 3 — 4. Он хочет склеить их в большой куб по следующему правилу: два маленьких кубика можно склеить между собой только по граням с одинаковым числом. Какую наибольшую сумму чисел может получить маленький Стёпа на внешних гранях большого куба?
Многие ошибаются в этой задаче) Сколько у Вас получилось? Пишите в комментариях, но не забывайте их скрывать (оборачивать в Spoiler).
#УстныйСчёт #Новости
У маленького Стёпы есть 125 игральных кубиков. На гранях кубиков написаны числа от 1 до 6. Напротив числа 1 стоит число 6, напротив 2 — 5, напротив 3 — 4. Он хочет склеить их в большой куб по следующему правилу: два маленьких кубика можно склеить между собой только по граням с одинаковым числом. Какую наибольшую сумму чисел может получить маленький Стёпа на внешних гранях большого куба?
Многие ошибаются в этой задаче) Сколько у Вас получилось? Пишите в комментариях, но не забывайте их скрывать (оборачивать в Spoiler).
#УстныйСчёт #Новости
Приближаются праздники, поэтому тренируемся делить торт:) Сегодня в качестве утренней разминки сразу две головоломки для любого возраста. Первая была в конкурсе Квантика.
Малыш и Карлсон делят торт 5×6, украшенный вишенками (см. рисунок). Как Карлсону разрезать торт на две одинаковые по форме и размеру части, что все вишенки достанутся ему?
#УтренняяРазминка #ГеометрияДляВсех
Малыш и Карлсон делят торт 5×6, украшенный вишенками (см. рисунок). Как Карлсону разрезать торт на две одинаковые по форме и размеру части, что все вишенки достанутся ему?
#УтренняяРазминка #ГеометрияДляВсех
Вторая чуть сложнее и была на онлайн-турнире Квантландия в прошлом году. Её решение мы опубликуем вечером. А пока напоминаю, что сейчас и до конца марта идёт первый турнир нового сезона на сайте https://math.kvantland.com/ Участие бесплатное, победителей ждут призы!
Малыш и Карлсон делят ещё один торт 5×6, украшенный вишенками (см. рисунок). Как Карлсону разрезать торт на две одинаковые по форме и размеру части, что все вишенки достанутся ему?
#УтренняяРазминка #ГеометрияДляВсех
Малыш и Карлсон делят ещё один торт 5×6, украшенный вишенками (см. рисунок). Как Карлсону разрезать торт на две одинаковые по форме и размеру части, что все вишенки достанутся ему?
#УтренняяРазминка #ГеометрияДляВсех
Please open Telegram to view this post
VIEW IN TELEGRAM
И в подарок на 8 марта классная задачка из конкурса Квантика (автор С. Полозков). Она как раз про восьмёрку:)
Фигура на рисунке имеет форму восьмёрки. Разрежьте её на две части и сложите из них правильный шестиугольник (все его стороны равны, и все углы тоже). Части можно поворачивать и переворачивать.
#ГеометрияДляВсех
Фигура на рисунке имеет форму восьмёрки. Разрежьте её на две части и сложите из них правильный шестиугольник (все его стороны равны, и все углы тоже). Части можно поворачивать и переворачивать.
#ГеометрияДляВсех
“Мудрецы за круглым столом”
В задачнике “Кванта” под особенными номерами обычно особенные задачи:) Возможно Вы помните задачу под номером 1, которую по легенде предложил академик А.Н. Колмогоров https://yangx.top/kvantland/414 Или задачу Архимеда под номером 1000, которая тоже была на нашем канале https://yangx.top/kvantland/439
А сегодня особенная задача под номером 2000 в чуть изменённой формулировке (автора не знаю). А если Вы знаете другие классные задачки про мудрецов, то обязательно поделитесь в комментариях своей любимой задачей. Как всегда, выбрать вариант ответа и посмотреть правильный можно по кнопке лампочка в анонимном опросе ниже. Ну и отдельный лайк новой прекрасной иллюстрации от нашего художника!
Есть 100 мудрецов и неограниченный запас колпаков каждого из n различных цветов (число n не превосходит 100 и известно мудрецам). Мудрецы одновременно закрывают глаза, и каждому из них надевают на голову колпак (например, все надетые колпаки могут оказаться одного цвета). Затем мудрецы открывают глаза. Каждый видит, какие колпаки надеты на остальных, но не видит своего. После этого каждый мудрец пытается угадать, какого цвета его колпак, записав свою гипотезу на бумажке втайне от остальных. При каком наибольшем n мудрецы могут заранее договориться таким образом, чтобы в любом случае хотя бы один угадал цвет своего колпака?
#Логика
В задачнике “Кванта” под особенными номерами обычно особенные задачи:) Возможно Вы помните задачу под номером 1, которую по легенде предложил академик А.Н. Колмогоров https://yangx.top/kvantland/414 Или задачу Архимеда под номером 1000, которая тоже была на нашем канале https://yangx.top/kvantland/439
А сегодня особенная задача под номером 2000 в чуть изменённой формулировке (автора не знаю). А если Вы знаете другие классные задачки про мудрецов, то обязательно поделитесь в комментариях своей любимой задачей. Как всегда, выбрать вариант ответа и посмотреть правильный можно по кнопке лампочка в анонимном опросе ниже. Ну и отдельный лайк новой прекрасной иллюстрации от нашего художника!
Есть 100 мудрецов и неограниченный запас колпаков каждого из n различных цветов (число n не превосходит 100 и известно мудрецам). Мудрецы одновременно закрывают глаза, и каждому из них надевают на голову колпак (например, все надетые колпаки могут оказаться одного цвета). Затем мудрецы открывают глаза. Каждый видит, какие колпаки надеты на остальных, но не видит своего. После этого каждый мудрец пытается угадать, какого цвета его колпак, записав свою гипотезу на бумажке втайне от остальных. При каком наибольшем n мудрецы могут заранее договориться таким образом, чтобы в любом случае хотя бы один угадал цвет своего колпака?
#Логика
При каком наибольшем n мудрецы могут заранее договориться таким образом, чтобы в любом случае хотя бы один угадал цвет своего колпака?
Anonymous Quiz
8%
2
9%
3
41%
99
30%
100
11%
Правильный ответ другой
Сегодня в качестве утренней разминки интересная задачка из жизни:)
Два человека спорят, почему квадратный столик с четырьмя ножками качается: один говорит, что пол ровный, а ножки у столика сделаны плохо, другой – что ножки идеальные, а пол кривой. Как выяснить, кто из них прав? Никаких измерительных приборов под рукой нет.
Сможете ли Вы разрешить этот спор? Что нужно сделать? Ответы пишите в комментариях, но не забывайте их скрывать (оборачивать в Spoiler).
#ЗадачиИзЖизни #УтренняяРазминка
Два человека спорят, почему квадратный столик с четырьмя ножками качается: один говорит, что пол ровный, а ножки у столика сделаны плохо, другой – что ножки идеальные, а пол кривой. Как выяснить, кто из них прав? Никаких измерительных приборов под рукой нет.
Сможете ли Вы разрешить этот спор? Что нужно сделать? Ответы пишите в комментариях, но не забывайте их скрывать (оборачивать в Spoiler).
#ЗадачиИзЖизни #УтренняяРазминка