Караульный Z
116K subscribers
201K photos
90.1K videos
269 files
181K links
Медиапространство ручной работы.
加入频道
Forwarded from The Idealist
Harvard Business Review: 8 подходов, с помощью которых машинное обучение изменит сферу труда

Машинное обучение — это будущее бизнеса. Сегодня не стоит вопрос стоит ли его внедрять - менеджерам компаний надо задумываться о том, насколько быстро и эффективно это сделать. Специалисты Harvard Business Review проанализировали активно растущую сферу машинного обучения и предложили 8 самых перспективных подходов, внедрение которых может принести пользу уже сегодня

"Машинное обучение позволяет компаниям переосмыслить целые бизнес-процессы. Потенциал огромен. Именно поэтому поставщики программного обеспечения вкладывают значительные средства в добавление ИИ в свои существующие приложения и в создание сетевых решений".

https://theidealist.ru/machinelearning/

#HBR #технологии #общество #ИИ #машинноеобучение #бизнес
Forwarded from The Idealist
Fastcompany: Искусственный интеллект не призван лишить вас работы, он поможет вам работать лучше

Роботы и компьютерные системы на основе нейронных сетей уже сейчас активно внедряются в экономику. Многие люди опасаются, что работодатель в конце концов предпочтёт человеческому сотруднику его механического коллегу, ведь он не спит, не ест и не ходит в отпуск. Однако по мнению ведущих специалистов в сфере труда причин для паники нет: ценность человека в будущем сохранится, а компьютерные системы призваны не заменить, но дополнить наши возможности, позволив нам стать эффективнее.

Кроме того, технологии, условно называемые Artifical Intelligence, требуют аккуратного и грамотного внедрения, только тогда они смогут принести бизнесу настоящую пользу.

"Согласно исследованиям PwC, к 2030 году ИИ принесёт глобальной экономике 15,7 трлн. долл. США, что будет обусловлено прежде всего ростом производительности и инновационными продуктами. В разных категориях технология уже демонстрирует потенциал. Компании с финансовыми услугами используют подобные технологии - от чатов, которые отвечают на основные вопросы клиентов на платформах с ИИ, до методов предотвращения мошенничества и отмывания денег. Приложения для управления персоналом (HR) помогают компаниям сортировать резюме, находить таланты и даже проводить предварительные собеседования. Робот может использоваться для предупреждений о техническом состоянии и предотвращения отказа оборудования и транспортных средств в автомобильных парках. Алгоритмы покупки могут помочь сортировать данные для принятия лучших коммерческих решений. В сфере здравоохранения перспективные приложения варьируются от роботизированной хирургии до автоматизации диагностики".

https://theidealist.ru/aifuturework/

#общество #технологии #компьютеры #ИИ #AI #экономика #МашинноеОбучение #работа #трудоустройство #hr #кадры #бизнес #будущее
Forwarded from The Idealist
Nautilus: Почему человеческий мозг настолько эффективен?

Мы привыкли считать современные компьютерные системы выдающимися устройствами, во много раз превосходящими по эффективности человеческий мозг. И действительно, если речь идёт о математических вычислениях и обработке последовательной информации, то "железу" нет равных. Однако "венцу природы" тоже есть что противопоставить современному прогрессу: ни один современный компьютер, оказывается, не может параллельно обрабатывать столько информации, сколько мозг человека. Во всяком случае пока не может.

"Профессиональный теннисист может проследить траекторию теннисного мяча после его подачи со скоростью до 257 км. в час, перейти к оптимальному месту на корте, расположить свою руку и повернуть ракетку, чтобы отбить мяч на площадку соперника – и всё это всего за несколько сотен миллисекунд. Более того, мозг может выполнять все эти задачи (с помощью контролируемого им тела) с потреблением энергии примерно в десять раз меньше, чем у персонального компьютера. Как ему удаётся подобное? Важное различие между компьютером и мозгом заключается в способе обработки информации в каждой системе. Компьютерные задачи выполняются в основном последовательными шагами. Это видно по тому, как инженеры программируют компьютеры, создавая последовательный поток инструкций. Для последовательного каскада операций необходима высокая точность на каждом шаге, поскольку ошибки накапливаются и усиливаются с течением времени. Мозг также использует последовательные шаги для обработки информации. В примере с отбитым теннисным мячиком информация поступает из глаза в мозг, затем в спинной мозг, который обеспечивает сокращения мышц ног, туловища, рук и запястья. Но мозг также использует параллельную обработку, используя преимущества большого количества нейронов и соединений, которые устанавливает каждый нейрон".

https://theidealist.ru/brainvspc/

#Nautilus #наука #нейробиология #мозг #машинноеобучение #компьютеры
Forwarded from The Idealist
The Atlantic: когда ваше лицо вам больше не принадлежит

Представьте себе ситуацию: зашли вы в кафе неподалёку от студенческого кампуса – выпить кофе с друзьями, обсудить научную работу с преподавателем. На неприметно висящую в углу камеру внимания не обратили. Но бесстрастный объектив не просто зафиксировал ваше лицо. Он добавил его к массиву данных, который будет использован для систем машинного обучения по распознаванию лиц. И очень скоро эти данные, пусть анонимные и обезличенные, будут доступны в сети кому угодно.

«Когда в кофейне собирается 20 человек, то в помещении есть по крайней мере 21 камера: по одной в телефонах и минимум одна в углу помещения. Ваш разговор могут записать и выложить в твиттер, а ваше лицо – «засветиться» на фоне селфи другого клиента или сеанса Skype. Но это не мешает даже беспокоящимся о приватности людям посещать кофейни. Они принимают на себя соответствующие риски. Это понятие - «разумного» ожидания конфиденциальности – помогает исследователям, которые изучают публичные объекты. Но сама идея того, что в этом случае разумно, достаточно сложна. Преподаватели в трех университетах - Дьюка, Стэнфорде и Университете Колорадо в Колорадо-Спрингс - столкнулись с негативной реакцией после формирования баз данных лиц студентов, посещающих кафе в студенческих городках. Когда вы приходите в подобное заведение, разумно ожидать, что вас увидит камера, однако навряд ли вы готовы к тому, что станете предметом исследования, частью набора данных, который может жить в сети вечно».

https://theidealist.ru/stolenface/

#TheAtlantic #технологии #общество #машинноеобучение #камеры #слежка #персональныеданные #приватность
Forwarded from The Idealist
Harvard Business Review: какие профессиональные навыки будут актуальны в эпоху массовой автоматизации?

Совсем скоро машины захватят все наши рабочие места, оттеснив человека не только из промышленного производства, но и из сферы услуг – так во всяком случае принято считать в среде футурологов и техновизионеров. Но так ли уж безраздельно совершенны детища кремния и пластмасс? Оказывается, есть области, где человек всё же может дать им нехилую фору. Например, в пабе вы охотнее перекинетесь парой слов с живым барменом, который благодаря своему уникальному пониманию контекста и эмоций мгновенно подберёт для вас правильный напиток. Или программу лечения вы скорее обсудите с живым доктором. Понимание контекста и эмпатия – главные козыри человеческого работника будущего, которыми он побьёт любого «железного» оппонента. Во всяком случае в среднесрочной перспективе.

«Люди могут легко принимать во внимание контекст при принятии решений или взаимодействии с другими людьми. Контекст особенно интересен, потому что он открыт: например, каждый раз, когда появляется новость, она меняет контекст (в большей или меньшей степени), в котором мы работаем. Кроме того, изменения в контексте могут изменить не только то, как факторы взаимодействуют друг с другом, но и изменить конфигурацию факторов на основных направлениях. Это проблема для машинного обучения, которое работает с наборами данных, которые по определению были собраны ранее, в другом контексте».

https://theidealist.ru/automation/

#HBR #общество #технологии #автоматизация #эмоции #компьютеры #машинноеобучение #рыноктруда
Forwarded from The Idealist
​​Aeon: у технологии распознавания лиц и френологии много общего

Распознавание лиц по праву можно считать уже технологией не будущего, но настоящего. В ближайшие 10 лет она будет буквально везде. Но наряду с очевидными плюсами за спиной этого эффективного инструмента скрывается зловещая тень лженаук прошлого: френологии и евгеники. Некоторые критики вообще ставят знак равенства по разрушительным последствиям между бесконтрольным распространением распознавания лиц и оборотом плутония. Конечно, камера на подъезде не убьёт вас радиацией, однако вы всё равно неиллюзорно рискуете вследствие ошибки машины оказаться, например, в списке потенциальных преступников. И дело не только в ошибках: сам подход мало того, что технологически несовершенен и научно не обоснован, так ещё и весьма неоднозначен с моральной точки зрения.

"В последние годы алгоритмы машинного обучения дают возможность правительствам и частным компаниям собирать все виды информации о внешнем виде людей. Несколько стартапов сегодня утверждают, что могут использовать искусственный интеллект (ИИ) для помощи в определении личностных качеств кандидатов на работу на основе их лиц. В Китае правительство первым использовало камеры наблюдения для выявления и отслеживания передвижений этнических меньшинств. Между тем некоторые школы используют камеры, которые отслеживают внимание детей во время уроков, засекая особенности движения лица и бровей. А несколько лет назад исследователи Сяолинь Ву и Си Чжан заявили, что разработали алгоритм идентификации преступников по форме лица, обеспечивающий точность 89,5%. Весьма напоминает идеи 19 века, в частности, работы итальянского криминолога Чезаре Ломброзо, который утверждал, что преступников можно распознать по скошенным, «звериным» лбам и ястребиным носам".

https://theidealist.ru/phrenology/

#Aeon #общество #технологии #ИИ #МашинноеОбучение #френология