Дистанционное зондирование и геоинформатика
1.36K subscribers
7.76K photos
563 videos
113 files
10.1K links
Группа о новостях геоинформатики и дистанционного зондирования Земли. Наш сайт в интернете: https://gisproxima.ru
加入频道
Forwarded from Спутник ДЗЗ
This media is not supported in your browser
VIEW IN TELEGRAM
Kayrros обнародовала карту глобального мониторинга выбросов метана

Французская компания Kayrros обнародовала бесплатную версию карты ежедневного глобального мониторинга метана.

На карте представлены результаты мониторинга, начиная с 2019 года.

Можно переключаться между двумя представлениями карты: "Суперэмитенты" и "Страны" (Super-emitter view / Country view). Суперэмитенты — это источники выбросов, которые выделяют газ со скоростью, значительно превышающей среднюю.

Щелкнув по кружку, соответствующему суперэмитенту метана, можно посмотреть карту концентрации метана вокруг данного источника выбросов, построенную по спутниковым данным. Щелкнув по стране, можно просмотреть данные об объеме выбросов метана.

Данные можно скачать в формате CSV.

Для обнаружения и количественной оценки крупных антропогенных выбросов метана используются спутниковые данные Sentinel-5p TROPOMI, гиперспектрометра EMIT и ряд других открытых данных.

Данные канадских спутников GHGSat используются в платной версии карты.

Сейчас на карте показаны 5 645 суперэмитентов метана по всему миру. Из них 3320 связаны с добычей нефти и газа, 874 — угля и 1451 — отходов и сельского хозяйства. Похоже, на карте показаны только источники антропогенных выбросов метана.

Информация об источниках данных и методах, используемых Kayrros, приведена в FAQ. См. также рисунок ниже.

#данные #CH4
👍2
Forwarded from Спутник ДЗЗ
Возможности Sentinel-2 для оценки выбросов метана

В (Varon et al., 2021) продемонстрирована возможность использования прибора Sentinel-2 MSI для обнаружения и количественной оценки аномально больших точечных источников метана с высоким пространственным разрешением (20 м) и высокой периодичностью съёмки (2–5 суток).

Кривая оптической толщины метана (CH4), углекислого газа (CO2) и водяного пара показана на рисунке ⬆️. Приближённо, её можно считать аналогом кривой спектров поглощения этих веществ. Для обнаружения и оценки концентрации метана в столбе атмосферы используются спектральные каналы коротковолнового инфракрасного диапазона (SWIR) — B11 (∼1560–1660 нм) и B12 (∼2090–2290 нм). Канал B12, в целом, более чувствителен к метану, чем канал B11.

Поглощение водяного пара и CO2 в этих двух диапазонах создает риск появления артефактов при определении метана. Однако водяной пар и CO2 обычно не испускаются вместе с метаном и потому оказывают пренебрежимо малое влияние на определение точечных источников метана.

В работе представлены три метода определения концентрации метана в столбе атмосферы: сравнение яркостей пикселей канала B12 в разные моменты времени (с шлейфом метана и без него), сравнение яркостей каналов B12 и B11, а также комбинированный метод. Последний метод, как правило, показывает лучшие результаты. Важно: для измерений используются данные Sentinel-2 Top-of-Atmosphere, не прошедшие атмосферную коррекцию.

Лучшие результаты, с точки зрения точности оценки концентрации выбросов метана, метод показал на однородных поверхностях лишенных растительности. На неоднородных ландшафтах, вроде сельскохозяйственных угодий и городской застройки, точность снижалась в несколько раз. В таких случаях авторы рекомендуют сегментировать изображения. В целом, метод лучше подходит для обнаружения шлейфов метана, чем для оценки его концентрации.

Метод легко переносится на другие спутниковые сенсоры, имеющие аналогичные каналы SWIR, в частности, на сенсоры спутников Landsat. Так, предложенный метод используется в работе (Tai-Long He et al., 2024), показавшей увеличение выбросов метана в Туркменистане после распада СССР. Успеху применения метода во многом способствовал аридный ландшафт района исследований.

В завершение — обзор спутниковых методов количественной оценки выбросов метана в коротковолновом инфракрасном диапазоне, от глобального масштаба до точечных источников:

📖 (Jacob D. J. et al., 2022) Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane.

#GHG #CH4 #sentinel2
Forwarded from Спутник ДЗЗ
Global Methane Emitters Tracker (GMET) [ссылка] содержит оценки выбросов ископаемого топлива на месторождениях нефти, газа и угля, трубопроводах для транспортировки природного газа, предлагаемых проектах и запасах, а также атрибуцию шлейфов метана, полученных с помощью дистанционного зондирования.

По состоянию на ноябрь 2023 года первая версия трекера содержит оценки выбросов метана для добычи угля и газопроводов, атрибуцию наблюдений за шлейфами метана для нефтегазовой инфраструктуры Северной Америке и наблюдений за угольными шахтами по всему миру. В будущих версиях трекера обещают расширить охват атрибуции шлейфов. GMET также связывает данные GEM's Oil & Gas Extraction Tracker с оценками выбросов метана, разработанными Climate TRACE (https://climatetrace.org/downloads).

Данные доступны для загрузки и просмотра с помощью интерактивной карты и сводных таблиц. Каждый угольный и нефтегазовый актив связан с отдельным информационным бюллетенем на GEM.wiki, содержащим ссылки и дополнительную информацию. Методика проекта описана здесь.

🗺 Карта
📊 Сводные таблицы
🛢 Скачать данные

#данные #GHG #CH4
Forwarded from Спутник ДЗЗ
Обзор алгоритмов расчёта концентрации метана на основе спутниковых данных

📖 Jiang Y, Zhang L, Zhang X, Cao X. Methane Retrieval Algorithms Based on Satellite: A Review. Atmosphere. 2024; 15(4):449. https://doi.org/10.3390/atmos15040449

В статье представлен обзор спутников дистанционного зондирования метана и приведены алгоритмы расчёта концентрации метана по спутниковым данным. Спутники разделены на две категории — для наблюдения площадных и точечных источников метана ⬆️. Дан прогноз развития методов дистанционного зондирования метана из космоса.

#GHG #CH4
Forwarded from Спутник ДЗЗ
Carbon Mapper опубликовала первые снимки с найденными выбросами метана

Некоммерческая организация Carbon Mapper, занимающаяся мониторингом парниковых газов, опубликовала изображения, полученные с запущенного в августе спутника Planet Tanager-1, на которых видны шлейфы метана от энергетических установок.

📸 Шлейф метана обнаружен на нефтегазовом месторождении в техасском Пермском бассейне (Permian Basin) 24 сентября 2024 года. По предварительной оценке Carbon Mapper, объем выбросов составляет 400 кг CH4/ч.

Carbon Mapper разрабатывает глобальную систему мониторинга метана. Организация привлекла 130 млн долларов для содействия государственно-частному партнерству между Лабораторией реактивного движения NASA (JPL) и Planet, в рамках которого технология гиперспектрального сенсора была передана от государственной организации (JPL) частному сектору.

В отличие от спутников SuperDove компании Planet, новый сенсор имеет не 8, а целых 400 спектральных каналов, и является одним из самых современных сенсоров, которые на сегодняшний день работают на орбите. Разработчикам Planet пришлось создать инфраструктуру для передачи, обработки и доставки данных, собираемых Tanager-1.

“Программа раннего доступа [к данным Tanager-1] оказалась слишком популярной и мы рады, что сможем передать эти данные в другие руки”, — сказал Трой Томан (Troy Toman), директор по продуктам Planet. Спутник находится на этапе ввода в эксплуатацию, и должен быть переведен на более низкую рабочую орбиту, а этот процесс не будет завершен до начала следующего года.

Planet и Carbon Mapper планируют построить как минимум еще один космический аппарат Tanager, ориентировочно в 2025 году.

Carbon Mapper собирается выкладывать данные об обнаружении выбросов метана и углекислого газа в открытый доступ, в то время как Planet рассчитывает на коммерческий доход от гиперспектральных данных Tanager-1.

#гиперспектр #CH4
Forwarded from Спутник ДЗЗ
Спутниковая платформа ElaraSat австралийской компании Gilmour Space выбрана для создания спутника-демонстратора, измеряющего выбросы метана

Работы по созданию спутника возглавляет компания LatConnect60 из Перта (Австралия), занимающейся дистанционным зондированием Земли. Спутник будет собирать данные о выбросах метана и углерода с целью сокращения этих выбросов в будущем.

Стокилограммовый спутник, получивший название SWIRSAT (Short-Wave Infrared Imagery Satellite — спутник коротковолновой инфракрасной съемки) создается по программе Австралийского космического агентства — International Space Investment India Projects. Аппарат будет оснащен современными датчиками и компьютером, предоставленными сиднейской компанией Spiral Blue. Эти компоненты будут интегрированы в платформу ElaraSat на предприятии Gilmour Space в Квинсленде, и запущены компанией Skyroot Aerospace в Индии.

“SWIRSAT позволит получить важнейшие сведения из данных наблюдения Земли с очень высоким пространственным разрешением в коротковолновом инфракрасном диапазоне”, — сообщил Венкат Пиллай (Venkat Pillay), генеральный директор и основатель компании LatConnect60. “Он позволит с высокой точностью определять и количественно оценивать выбросы углерода на уровне [точечных] источников, заполняя ключевой пробел на рынке данных с низкой околоземной орбиты”.

Источник

#австралия #индия #CH4
Forwarded from Спутник ДЗЗ
Наблюдения MethaneSAT позволили уточнить объемы выбросов метана

Снимки, полученные запущенным 4 марта 2024 года спутником MethaneSAT, позволили уточнить объем выбросов метана в нескольких нефтегазоносных бассейнах.

Общий объем выбросов метана при добыче нефти и газа, наблюдаемый на сентябрьских снимках MethaneSAT, варьируется от примерно 50 тонн в час в бассейне Юинта (Uinta, шт. Юта) до 280 тонн в час в Пермском бассейне (шт. Техас).

Исходя из валовой добычи газа, уровень потерь (или интенсивность выбросов), наблюдаемый в Пермском бассейне составляет от 1,8% до 2,9%. Это примерно в девять раз превышает целевой уровень потерь в 0,2%, который должен быть достигнут к 2030 году. В бассейне Юинта с его устаревшей, подверженной утечкам инфраструктурой и низкой добычей нефти и газа, MethaneSAT наблюдал уровень потерь около 9%.

Выбросы, оцененные MethaneSAT, значительно превышают данные, полученные на основе “восходящих” оценок. Даже за вычетом источников, не связанных с нефтью и газом, выбросы метана, наблюдаемые в Пермском бассейне, три-пять раз превышают оценки EPA (Агентство по охране окружающей среды США), а выбросы, наблюдаемые в Южном Каспии, более чем в 10 раз превышают данные независимой глобальной базы данных по выбросам EDGAR в 2022 году.

Пространственное разрешение данных MethaneSAT составляет 100 м (поперек трассы) х 400 м (вдоль трассы), что позволяет оценивать выбросы метана от источников, площадью свыше 1 кв. км. Полоса обзора составляет 200 км.

Сейчас MethaneSAT ведет пробные наблюдения на нескольких нефтегазоносных бассейнах США, в Венесуэле и в Южном Каспии. В полном объеме платформа данных MethaneSAT должна заработать в начале 2025 года.

📸 Концентрация метана в Пермском бассейне (шт. Техас, США) на снимке MethaneSAT.

Источник

#CH4
Forwarded from Спутник ДЗЗ
GHGSat планирует расширить свою группировку до 21 спутника к 2027 году

Компания GHGSat объявила о запуске девяти новых спутников к концу 2026 года, что увеличит группировку спутников для мониторинга выбросов метана с первоначальных 12 до 21. Дополнительные спутники позволят GHGSat чаще посещать промышленные объекты, обнаруживая и измеряя выбросы метана с периодичностью около суток.

Источник

#CH4
Forwarded from Спутник ДЗЗ
Kayrros упрощает поиск источников выбросов метана

Компания Kayrros, занимающаяся мониторингом выбросов парниковых газов, внедряет большую языковую модель чтобы упростить поиск информации об источниках выбросов метана.

“Метановый GPT” KayrrosAI позволяет пользователям задавать вопросы на простом языке и бесплатно получать ответы об источниках выбросов метана, данные о которых содержит созданная компанией карта Methane Watch.

Источник

#CH4 #GHG #ИИ #данные
Forwarded from Спутник ДЗЗ
Группировка Carbon Dioxide Monitoring (CO2M)

Спутники группировки Carbon Dioxide Monitoring (CO2M) будут измерять содержание углекислого газа (CO2), метана (CH4) и диоксида азота (NO2) в атмосфере. Группировка создается в рамках европейской программы Copernicus, в числе Copernicus Sentinel Expansion missions.

Каждый спутник CO2M будет нести три основных инструмента:

🔹 Комбинированный спектрометр CO2/NO2 (CO2 & NO2I imager, CO2I/NO2I)измеряет концентрацию углекислого газа (CO2), метана (CH4) и диоксида азота (NO2). Его пространственное разрешение составляет 4 км. Прибор должен определять содержание CO2 в атмосферном столбе с высокой точностью (< 0,7 ppm) и низкой систематической погрешностью (< 0,5 ppm).

🔹 Многоугловой поляриметр (Multi-Angle Polarimeter, MAP)измеряет поляризацию света, отраженного атмосферой Земли. Эта информация будет использована для получения свойств аэрозолей, которые важны для корректировки измерений CO2.

🔹 Cloud Imager (CLIM)обеспечит получение изображений облаков. Эта информация будет использоваться для маскирования облаков при измерении концентрации газов.

Группировка CO2M станет основным спутниковым компонентом новой европейской системы мониторинга глобальных выбросов CO2 и CH4CO2MVS (CO2 monitoring and verification support capacity). CO2MVS разрабатывается как часть службы мониторинга атмосферы ЕС Copernicus (Copernicus Atmosphere Monitoring Service, CAMS).

Наблюдения за парниковыми газами, полученные с помощью CO2M, будут объединены на CO2MVS с результатами наземных измерений и моделирования, что позволит разделить антропогенные и природные выбросы CO2 и CH4. Данные об антропогенных выбросах будут использоваться для отслеживания прогресса в выполнении национальных обязательств по сокращению выбросов CO2.

Помимо парниковых газов, спутники CO2M будут отслеживать облачный покров, аэрозоли и солнечно-индуцированную флуоресценцию (СИФ). Мониторинг СИФ позволит лучше оценить естественные источники CO2, связанные с растительностью, что поможет точнее разделить антропогенные выбросы CO2 и выбросы из природных источников.

Один спутник CO2M обеспечит глобальное покрытие данными в течение 11 суток, с двумя спутниками этот срок сокращается до 5 суток, с тремя — до 3,5 суток. Спутники будут работать на солнечно-синхронной орбите высотой около 735 километров.

Первый спутник CO2M должен быть изготовлен к концу 2026 года, и будет работать на орбите в течение как минимум 7,5 лет. Запустить второй спутник планируют в 2027 году, третий — в 2029 году.

Генеральным подрядчиком проекта CO2M является немецкая компания OHB Systems (Otto Hydraulic Bremen Systems). Она занимается изготовлением спутников и интеграцией полезной нагрузки. Приборы CO2I/NO2I и MAP поставляются компанией Thales Alenia Space, а приборы CLIM — бельгийской компанией OIP Sensor Systems. Последние создаются на основе прибора Vegetation instrument спутника Proba-V.

CO2M является одной из запланированных европейских миссий по измерению выбросов углекислого газа. Другие подобные миссии:

Carb-Chaser — французский проект по измерению содержания CO2 в масштабе предприятия.
MicroCarb — совместный проект французского и британского космических агентств по оценке потоков CO2 в глобальном масштабе. Планируется к запуску в 2025 году.
CO2Image — немецкая миссия по мониторингу выбросов CO2 в масштабе предприятия. Запуск запланирован на 2026 год.

📸 Художественное изображение спутника CO2M [источник]

#GHG #CO2 #CH4 #NO2 #ESA #германия #франция
Forwarded from Спутник ДЗЗ
Выявление локализованных источников выбросов метана по данным TROPOMI

Антропогенные выбросы метана (CH4) являются вторым по значимости, после выбросов углекислого газа (CO2), антропогенным источником парниковых газов, способствующих глобальному потеплению. В недавно опубликованном исследовании на основе данных прибора TROPOMI спутника Sentinel-5P разработан алгоритм обнаружения и количественной оценки локализованных источников метана (уровня района).

Было выявлено 217 основных потенциальных районов-источников метана, на которые приходится около 20% всех выбросов, зафиксированных TROPOMI.

Сравнив расположение найденных районов с базами данных антропогенных и природных выбросов, исследователи пришли к выводу, что в 7,8% обнаруженных районов среди источников выбросов преобладает уголь, еще в 7,8% — нефть и газ, в 30,4% — другие антропогенные источники, такие как свалки или сельское хозяйство, а в 7,3% — водно-болотные угодья. В 46,5% случаев источники остались неизвестными.

Использованы данные TROPOMI/WFMD v1.8 XCH4 (2018–2021), а также базы данных выбросов EDGAR, GFEI и WetCHARTs. Данные TROPOMI/WFMD использовались после фильтрации и высотной коррекции.

📊 Блок-схема алгоритма обнаружения локализованных источников выбросов метана.

#CH4
Forwarded from Спутник ДЗЗ
”Метановые” новости

Накопилось некоторое количество новостей, связанных с дистанционными измерениями выбросов метана…

Из тг-канала Институт физики атмосферы им. А.М. Обухова РАН (ИФА):

🔹 Сколько метана выделяют водохранилища?
🔹 Методика коррекции орбитальных данных Standard L3 v6 IR AIRS Only Daily

Приятно, что рассказ об исследованиях не ограничивается аннотациями статей.

🔹 70% выбросов метана в нефтегазовом секторе США приходится на долю малых источников [источник]

Измерения выбросов метана с помощью спутникового и воздушного дистанционного зондирования обычно направлены на выделение объектов, выбрасывающих метан с высокой интенсивностью (т. н. “суперэмитентов”). Вклад нефтегазовых объектов выбрасывающих метан с низкой интенсивностью изучен хуже, а сами такие объекты часто остаются незамеченными в контексте оценок на национальном и региональном уровнях.

Ученые обнаружили, что около 70% выбросов метана в нефтегазовом секторе США приходится на мелкие источники, в которых добывается всего 10% американских нефти и газа.

🔹 Комплексная оценка выбросов метана после взрывов на “Северном потоке”.

В работе, которая проводилась под эгидой Международной обсерватории выбросов метана (IMEO), участвовали около 70 ученых из 30 исследовательских организаций. Результаты опубликованы в двух статьях в Nature Communications и одной — в Nature.

Научно-популярное изложение результатов:

• на сайте DLR — Nord Stream pipelines: analysis of methane emissions following damage
• На русском языке, в Naked Science — Ученые всесторонне оценили масштабы выброса метана после взрывов на “Северном потоке”

📸 Вертолет транспортирует комплекс HELiPOD для измерения концентрации метана [источник]

#CH4
Forwarded from Спутник ДЗЗ
This media is not supported in your browser
VIEW IN TELEGRAM
Данные метеоспутников GOES позволили ученым быстрее обнаруживать крупные выбросов метана

Результаты нового эксперимента показали, что прибор Advanced Baseline Imager (ABI), установленный на спутниках GOES-16, GOES-18 и недавно запущенном GOES-19, позволяет определять утечки или выбросы метана в режиме, близком к реальному времени

У нового метода есть свои ограничения. GOES может обнаруживать метан только в дневное время. Кроме того, ABI может обнаружить только очень крупные утечки метана, измеряемые десятками тонн в час.

📹 Спутник GOES-16 зафиксировал выброс метана из двух клапанов трубопровода во время плановой продувки. По данным наземных лидарных наблюдений, шлейфы метана находятся в нижних 300–600 метрах атмосферы и имеют ширину от 2 до 8 километров.

Источник

#CH4
Forwarded from Спутник ДЗЗ
Orbio Earth выложила в открытый доступ свои наработки по мониторингу выбросов метана

Компания Orbio Earth опубликовала свои наработки по спутниковому мониторингу выбросов метана — модели, программные инструменты, блокноты с примерами, эталонные наборы данных, а также документацию в форме вопросов и ответов. Всё — с открытым исходным кодом под некоммерческой лицензией.

🖥 GitHub-репозиторий
📖 Документация

Репозиторий содержит:

• Обученные модели для обнаружения метановых шлейфов по данным Sentinel-2, Landsat 8/9 и EMIT.
• Jupyter-блокноты, охватывающие постобработку и расчеты — для перехода от необработанных снимков к выводам о расположении и интенсивности выбросов метана.
• Инструментарий по созданию синтезированных шлейфов метана, который добавляет физически реалистичные шлейфы в чистые сцены — для обучения и стресс-тестирования.

Orbio Earth отслеживает глобальные выбросы метана в нефтегазовой отрасли с помощью спутниковых снимков и продаёт эти данные финансовым и энергетическим компаниям, которые хотят снизить риски выбросов метана.

#CH4 #климат #софт
Forwarded from Спутник ДЗЗ
Данные дистанционного зондирования показали, что выбросы метана с мусорных полигонов недооценивались

Твердые отходы на свалках — третий по величине антропогенный источник выбросов метана в мире. Выбросы метана со свалок существенно зависят от методов управления отходами и климатических условий.

Группа китайских ученых из National Engineering Research Center for Remote Sensing Satellite Application оценила выбросы метана со 102-х свалок с высокими выбросами по всему миру при различных стратегиях управления и климатических условиях, используя данные спутниковых наблюдений за 5 лет.

Исследователи сосредоточились на двух основных типах полигонов: открытых свалках без систем сбора газа и инженерных санитарных полигонах. Результаты показали, что открытые свалки выбрасывают в среднем в 4,8 раза больше метана, чем санитарные полигоны. Также оказалось, что широко используемая база данных EDGAR v8.0 (Emissions Database for Global Atmospheric Research) в среднем в 5 раз занижает оценки выбросов с открытых свалок.

Ключевым источником информации в работе стали гиперспектральные данные итальянского спутника PRISMA, имеющие пространственное разрешение 30 м. Использовались также данные авиационных гиперспектральных наблюдений.

По мнению авторов работы, преобразование открытых свалок в санитарные полигоны с одновременным направлением органических отходов на компостирование и в биогазовые установки в глобальном масштабе могло бы сократить выбросы метана на 80% (60–89%), обеспечивая потенциал смягчения в размере 760 (570–850) млн тонн CO2-эквивалента ежегодно. Результаты подчеркивают, что улучшение управления отходами, поддерживаемое экономическими и технологическими мерами, является одной из наиболее эффективных стратегий для снижения выбросов метана из сектора твердых отходов.

📊 Наблюдаемые выбросы метана из полигонов для захоронения отходов. В верхнем ряду показаны данные спутника PRISMA, в нижнем ряду — соответствующие им данные воздушных наблюдений.

📖 Tong, H., Cheng, T., Li, X.  et al. Reduction of methane emissions through improved landfill management. Nature Climate Change (2025). https://doi.org/10.1038/s41558-025-02391-1

#CH4