Выше дана нейросеть с известными значениями весов. Все функции активации — это Relu. Чему равен выход нейросети, если х=2?
Anonymous Quiz
13%
15
15%
16
39%
4
33%
14
Какой алгоритм оптимизации известен своей способностью выходить из локальных минимумов с помощью момента и адаптивных скоростей обучения?
Anonymous Quiz
26%
Стохастический градиентный спуск (SGD)
49%
Adam
12%
RMSprop
13%
Adagrad
Каков результат выполнения кода с картинки выше?
Anonymous Quiz
21%
[3 7 5]
7%
[1 5 9]
15%
[4 6 8]
57%
Ошибка выполнения
✍️ Разбираем задачи прошедшей недели
1️⃣ По умолчанию для новых тензоров в PyTorch параметр requires_grad установлен в False. Он указывает, нужно ли вычислять градиенты для тензора во время операций обратного распространения ошибки. Чтобы добиться этого, следует явно установить requires_grad=True при создании тензора.
2️⃣ Для классической линейной регрессии действует предположение о том, что дисперсия ошибок модели остаётся постоянной на протяжении всех значений независимых переменных. Гетероскедастичность — это нарушение данного предположения. То есть наличие гетероскедастичности можно заподозрить, если отклонения наблюдений от линии выборочной регрессии (остатки) достаточно сильно различаются.
3️⃣ Здесь нужно считать так:
- Первое умножение весов и прибавление смещений: 2*1 + 1 и 2*2 — 5 —> 3 и -1.
- Первое применение Relu: relu(3) = 3 и relu(-1) = 0.
- Второе умножение весов и прибавление смещений: 3*-2 + 0*4 = —6. —6 + 10 = 4.
- Второе применение Relu: relu(4) = 4.
4️⃣ Название Adam можно расшифровать как ADAptive Momentum. Этот метод объединяет две идеи: использование момента и адаптивных скоростей обучения. Вместо того чтобы адаптировать скорость обучения параметров на основе среднего первого момента, как в RMSProp, Adam также использует среднее значение вторых моментов градиентов.
5️⃣ Хорошее объяснение для этой задачи было дано в комментариях.
#разбор_задач
1️⃣ По умолчанию для новых тензоров в PyTorch параметр requires_grad установлен в False. Он указывает, нужно ли вычислять градиенты для тензора во время операций обратного распространения ошибки. Чтобы добиться этого, следует явно установить requires_grad=True при создании тензора.
2️⃣ Для классической линейной регрессии действует предположение о том, что дисперсия ошибок модели остаётся постоянной на протяжении всех значений независимых переменных. Гетероскедастичность — это нарушение данного предположения. То есть наличие гетероскедастичности можно заподозрить, если отклонения наблюдений от линии выборочной регрессии (остатки) достаточно сильно различаются.
3️⃣ Здесь нужно считать так:
- Первое умножение весов и прибавление смещений: 2*1 + 1 и 2*2 — 5 —> 3 и -1.
- Первое применение Relu: relu(3) = 3 и relu(-1) = 0.
- Второе умножение весов и прибавление смещений: 3*-2 + 0*4 = —6. —6 + 10 = 4.
- Второе применение Relu: relu(4) = 4.
4️⃣ Название Adam можно расшифровать как ADAptive Momentum. Этот метод объединяет две идеи: использование момента и адаптивных скоростей обучения. Вместо того чтобы адаптировать скорость обучения параметров на основе среднего первого момента, как в RMSProp, Adam также использует среднее значение вторых моментов градиентов.
5️⃣ Хорошее объяснение для этой задачи было дано в комментариях.
#разбор_задач
Как рассчитываются веса self-attention для определённого токена в оригинальной модели Transformer?
Anonymous Quiz
10%
Через feedforward нейросеть, применённую к эмбеддингам токена
57%
Через softmax скалярного произведения эмбеддингов токена и эмбеддингов всех других токенов
21%
Через вычисление позиции токена относительно других токенов
12%
Через свёрточную операцию, применённую к токену и ближайшим другим токенам
🧑💻 Статьи для IT: как объяснять и распространять значимые идеи
Напоминаем, что у нас есть бесплатный курс для всех, кто хочет научиться интересно писать — о программировании и в целом.
Что: семь модулей, посвященных написанию, редактированию, иллюстрированию и распространению публикаций.
Для кого: для авторов, копирайтеров и просто программистов, которые хотят научиться интересно рассказывать о своих проектах.
👉Материалы регулярно дополняются, обновляются и корректируются. А еще мы отвечаем на все учебные вопросы в комментариях курса.
Напоминаем, что у нас есть бесплатный курс для всех, кто хочет научиться интересно писать — о программировании и в целом.
Что: семь модулей, посвященных написанию, редактированию, иллюстрированию и распространению публикаций.
Для кого: для авторов, копирайтеров и просто программистов, которые хотят научиться интересно рассказывать о своих проектах.
👉Материалы регулярно дополняются, обновляются и корректируются. А еще мы отвечаем на все учебные вопросы в комментариях курса.
Какое из утверждений про Log Loss верное?
Anonymous Quiz
12%
Чем ниже Log Loss, тем хуже предсказательная способность модели
24%
Log Loss можно использовать только для бинарной классификации
48%
Log Loss сильнее штрафует за уверенные и ошибочные предсказания, чем за менее уверенные и ошибочные
16%
Log Loss не зависит от вероятностных оценок классификатора
Самые полезные каналы для программистов в одной подборке!
Сохраняйте себе, чтобы не потерять 💾
🔥Для всех
Библиотека программиста — новости, статьи, досуг, фундаментальные темы
Книги для программистов
IT-мемы
Proglib Academy — тут мы рассказываем про обучение и курсы
#️⃣C#
Книги для шарпистов | C#, .NET, F#
Библиотека шарписта — полезные статьи, новости и обучающие материалы по C#
Библиотека задач по C# — код, квизы и тесты
Библиотека собеса по C# — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Вакансии по C#, .NET, Unity Вакансии по PHP, Symfony, Laravel
☁️DevOps
Библиотека devops’а — полезные статьи, новости и обучающие материалы по DevOps
Вакансии по DevOps & SRE
Библиотека задач по DevOps — код, квизы и тесты
Библиотека собеса по DevOps — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
🐘PHP
Библиотека пхпшника — полезные статьи, новости и обучающие материалы по PHP
Вакансии по PHP, Symfony, Laravel
Библиотека PHP для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по PHP — код, квизы и тесты
🐍Python
Библиотека питониста — полезные статьи, новости и обучающие материалы по Python
Вакансии по питону, Django, Flask
Библиотека Python для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Python — код, квизы и тесты
☕Java
Библиотека джависта — полезные статьи по Java, новости и обучающие материалы
Библиотека Java для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Java — код, квизы и тесты
Вакансии для java-разработчиков
👾Data Science
Книги для дата сайентистов | Data Science
Библиотека Data Science — полезные статьи, новости и обучающие материалы по Data Science
Библиотека Data Science для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Data Science — код, квизы и тесты
Вакансии по Data Science, анализу данных, аналитике, искусственному интеллекту
🦫Go
Книги для Go разработчиков
Библиотека Go разработчика — полезные статьи, новости и обучающие материалы по Go
Библиотека Go для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Go — код, квизы и тесты
Вакансии по Go
🧠C++
Книги для C/C++ разработчиков
Библиотека C/C++ разработчика — полезные статьи, новости и обучающие материалы по C++
Библиотека C++ для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по C++ — код, квизы и тесты
Вакансии по C++
💻Другие профильные каналы
Библиотека фронтендера
Библиотека мобильного разработчика
Библиотека хакера
Библиотека тестировщика
💼Каналы с вакансиями
Вакансии по фронтенду, джаваскрипт, React, Angular, Vue
Вакансии для мобильных разработчиков
Вакансии по QA тестированию
InfoSec Jobs — вакансии по информационной безопасности
📁Чтобы добавить папку с нашими каналами, нажмите 👉сюда👈
🤖Также у нас есть боты:
Бот с IT-вакансиями
Бот с мероприятиями в сфере IT
Мы в других соцсетях:
🔸VK
🔸YouTube
🔸Дзен
🔸Facebook *
🔸Instagram *
* Организация Meta запрещена на территории РФ
Сохраняйте себе, чтобы не потерять 💾
🔥Для всех
Библиотека программиста — новости, статьи, досуг, фундаментальные темы
Книги для программистов
IT-мемы
Proglib Academy — тут мы рассказываем про обучение и курсы
#️⃣C#
Книги для шарпистов | C#, .NET, F#
Библиотека шарписта — полезные статьи, новости и обучающие материалы по C#
Библиотека задач по C# — код, квизы и тесты
Библиотека собеса по C# — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Вакансии по C#, .NET, Unity Вакансии по PHP, Symfony, Laravel
☁️DevOps
Библиотека devops’а — полезные статьи, новости и обучающие материалы по DevOps
Вакансии по DevOps & SRE
Библиотека задач по DevOps — код, квизы и тесты
Библиотека собеса по DevOps — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
🐘PHP
Библиотека пхпшника — полезные статьи, новости и обучающие материалы по PHP
Вакансии по PHP, Symfony, Laravel
Библиотека PHP для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по PHP — код, квизы и тесты
🐍Python
Библиотека питониста — полезные статьи, новости и обучающие материалы по Python
Вакансии по питону, Django, Flask
Библиотека Python для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Python — код, квизы и тесты
☕Java
Библиотека джависта — полезные статьи по Java, новости и обучающие материалы
Библиотека Java для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Java — код, квизы и тесты
Вакансии для java-разработчиков
👾Data Science
Книги для дата сайентистов | Data Science
Библиотека Data Science — полезные статьи, новости и обучающие материалы по Data Science
Библиотека Data Science для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Data Science — код, квизы и тесты
Вакансии по Data Science, анализу данных, аналитике, искусственному интеллекту
🦫Go
Книги для Go разработчиков
Библиотека Go разработчика — полезные статьи, новости и обучающие материалы по Go
Библиотека Go для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Go — код, квизы и тесты
Вакансии по Go
🧠C++
Книги для C/C++ разработчиков
Библиотека C/C++ разработчика — полезные статьи, новости и обучающие материалы по C++
Библиотека C++ для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по C++ — код, квизы и тесты
Вакансии по C++
💻Другие профильные каналы
Библиотека фронтендера
Библиотека мобильного разработчика
Библиотека хакера
Библиотека тестировщика
💼Каналы с вакансиями
Вакансии по фронтенду, джаваскрипт, React, Angular, Vue
Вакансии для мобильных разработчиков
Вакансии по QA тестированию
InfoSec Jobs — вакансии по информационной безопасности
📁Чтобы добавить папку с нашими каналами, нажмите 👉сюда👈
🤖Также у нас есть боты:
Бот с IT-вакансиями
Бот с мероприятиями в сфере IT
Мы в других соцсетях:
🔸VK
🔸YouTube
🔸Дзен
🔸Facebook *
🔸Instagram *
* Организация Meta запрещена на территории РФ
Что из нижеперечисленного важно для эффективной работы K-средних (K-Means)?
Anonymous Quiz
15%
Данные должны быть размечены
71%
Данные должны быть нормализованы
6%
Данные должны иметь высокую размерность
8%
Датасет должен быть небольшим
Хардкорный курс по математике для тех, кто правда любит математику!
Начать с вводных занятий можно здесь, ответив всего на 4 вопроса – https://proglib.io/w/7a0a51af
Что вас ждет:
– Вводный урок от CPO курса
– Лекции с преподавателями ВМК МГУ по темам: теория множеств, непрерывность функции, основные формулы комбинаторики, матрицы и операции над ними, градиентный спуск
– Практические задания для закрепления материала и ссылки на дополнительные материалы.
⚡️ Переходите и начинайте учиться уже сегодня – https://proglib.io/w/7a0a51af
Начать с вводных занятий можно здесь, ответив всего на 4 вопроса – https://proglib.io/w/7a0a51af
Что вас ждет:
– Вводный урок от CPO курса
– Лекции с преподавателями ВМК МГУ по темам: теория множеств, непрерывность функции, основные формулы комбинаторики, матрицы и операции над ними, градиентный спуск
– Практические задания для закрепления материала и ссылки на дополнительные материалы.
Please open Telegram to view this post
VIEW IN TELEGRAM
Как наличие сильно коррелированных признаков влияет на производительность Random Forest (случайного леса)?
Anonymous Quiz
47%
Random Forest устойчив к сильно коррелированным признакам и его производительность не страдает
24%
Сильно коррелированные признаки могут вызвать смещения в прогнозах модели
7%
Random Forest автоматически идентифицирует и удаляет такие признаки во время обучения
21%
Влияние зависит от глубины отдельных деревьев в Random Forest
✍️ Очередной воскресный разбор задач
1️⃣ Log Loss — это одна из функций потерь, используемая в задаче классификации. Основывается на вероятностной модели. Чтобы вычислить вероятность получения исходной выборки согласно предсказаниям модели, перемножаются вероятности каждого отдельного y при условии набора признаков x. Получившуюся таким образом функцию правдоподобия нужно максимизировать. Однако максимизировать произведение достаточно сложно, поэтому берётся логарифм. Кроме того, выражение преобразуется для того, чтобы от задачи максимизации перейти к задаче минимизации.
Причина, по которой Log Loss сильнее штрафует за уверенные и неверные прогнозы, заключается в свойствах логарифмической функции. Когда модель делает уверенное предсказание (то есть, pi близко к 1 для истинного класса 1 или pi близко к 0 для истинного класса 0), и это предсказание верно, логарифмический компонент приближается к 0, что приводит к меньшему значению потерь. Однако, если модель делает уверенное, но ошибочное предсказание (pi близко к 1, когда истинный класс 0, или pi близко к 0, когда истинный класс 1), логарифмический компонент стремится к бесконечности.
2️⃣ Рассмотрим, как работают операторы and и or в Python.
▪️and возвращает первый операнд, если он ложен, иначе возвращает второй операнд.
▪️or возвращает первый операнд, если он истинен, иначе возвращает второй операнд.
Таким образом, в этой задаче в переменную a (5 and 10) запишется 10. В переменную b (5 or 10) запишется 5. Верным ответом будет 30.
3️⃣ В данном объединении используется метод outer. Он работает как FULL JOIN в SQL, то есть полное внешнее объединение. Включаются все строки из обеих таблиц. Если совпадений по ключу нет, в результирующем DataFrame для отсутствующих значений вставляется NaN.
#разбор_задач
1️⃣ Log Loss — это одна из функций потерь, используемая в задаче классификации. Основывается на вероятностной модели. Чтобы вычислить вероятность получения исходной выборки согласно предсказаниям модели, перемножаются вероятности каждого отдельного y при условии набора признаков x. Получившуюся таким образом функцию правдоподобия нужно максимизировать. Однако максимизировать произведение достаточно сложно, поэтому берётся логарифм. Кроме того, выражение преобразуется для того, чтобы от задачи максимизации перейти к задаче минимизации.
Причина, по которой Log Loss сильнее штрафует за уверенные и неверные прогнозы, заключается в свойствах логарифмической функции. Когда модель делает уверенное предсказание (то есть, pi близко к 1 для истинного класса 1 или pi близко к 0 для истинного класса 0), и это предсказание верно, логарифмический компонент приближается к 0, что приводит к меньшему значению потерь. Однако, если модель делает уверенное, но ошибочное предсказание (pi близко к 1, когда истинный класс 0, или pi близко к 0, когда истинный класс 1), логарифмический компонент стремится к бесконечности.
2️⃣ Рассмотрим, как работают операторы and и or в Python.
▪️and возвращает первый операнд, если он ложен, иначе возвращает второй операнд.
▪️or возвращает первый операнд, если он истинен, иначе возвращает второй операнд.
Таким образом, в этой задаче в переменную a (5 and 10) запишется 10. В переменную b (5 or 10) запишется 5. Верным ответом будет 30.
3️⃣ В данном объединении используется метод outer. Он работает как FULL JOIN в SQL, то есть полное внешнее объединение. Включаются все строки из обеих таблиц. Если совпадений по ключу нет, в результирующем DataFrame для отсутствующих значений вставляется NaN.
#разбор_задач
🤖 Напоминаем, что у нас есть еженедельная email-рассылка, посвященная последним новостям и тенденциям в мире искусственного интеллекта.
В ней:
● Новости о прорывных исследованиях в области машинного обучения и нейросетей
● Материалы о применении ИИ в разных сферах
● Статьи об этических аспектах развития технологий
● Подборки лучших онлайн-курсов и лекций по машинному обучению
● Обзоры инструментов и библиотек для разработки нейронных сетей
● Ссылки на репозитории с открытым исходным кодом ИИ-проектов
● Фильмы, сериалы и книги
👉Подписаться👈
В ней:
● Новости о прорывных исследованиях в области машинного обучения и нейросетей
● Материалы о применении ИИ в разных сферах
● Статьи об этических аспектах развития технологий
● Подборки лучших онлайн-курсов и лекций по машинному обучению
● Обзоры инструментов и библиотек для разработки нейронных сетей
● Ссылки на репозитории с открытым исходным кодом ИИ-проектов
● Фильмы, сериалы и книги
👉Подписаться👈