⚡️ Мы запускаем онлайн-курс по машинному обучению для Data Science.
Хочешь войти в Data Science, но не знаешь, с чего начать?
А может, ты уже в теме, но чувствуешь, что знаний не хватает?
Старт курса — 12 августа, и это отличный шанс пройти весь путь — от теории до уверенного применения.
Что внутри:
— от линейных моделей и градиентного спуска до бустинга и рекомендательных систем
— реальные примеры, практика, задачи и живая менторская поддержка
— всё, что нужно, чтобы не просто разобраться, а применять ML в реальных проектах
Ведет курс Мария Жарова:
ML-инженер в Wildberries, преподаватель МФТИ, ТГУ и МИФИ, практик и автор канала @data_easy
🎁 По промокодуEarlybird — скидка 10.000 рублей, только до 27 июля.
Для первых 10 студентов мы подготовили эксклюзивный лонгрид по теме курса, который позволит начать учиться уже сейчас.
👉 Записаться на курс
Хочешь войти в Data Science, но не знаешь, с чего начать?
А может, ты уже в теме, но чувствуешь, что знаний не хватает?
Старт курса — 12 августа, и это отличный шанс пройти весь путь — от теории до уверенного применения.
Что внутри:
— от линейных моделей и градиентного спуска до бустинга и рекомендательных систем
— реальные примеры, практика, задачи и живая менторская поддержка
— всё, что нужно, чтобы не просто разобраться, а применять ML в реальных проектах
Ведет курс Мария Жарова:
ML-инженер в Wildberries, преподаватель МФТИ, ТГУ и МИФИ, практик и автор канала @data_easy
🎁 По промокоду
Для первых 10 студентов мы подготовили эксклюзивный лонгрид по теме курса, который позволит начать учиться уже сейчас.
👉 Записаться на курс
👍1
Что выведет код?
Anonymous Quiz
70%
[1, 2, 3, 4]
15%
[[1], [2, 3], [4]]
11%
[1, [2, 3], 4]
5%
[1, 4]
👍1
🔥 Хороший ML-разработчик не начинает с нейросетей
На собеседовании по ML System Design кандидату дают задачу «предсказать отток», а он сразу лезет в нейросети. Красиво, модно, дорого.
Но профи думает иначе:
💭 Логрегрессия? Градиентный бустинг?
💭 А сколько у нас данных и времени?
💭 Что с интерпретируемостью?
Потому что не выбрать адекватную модель — это уже ошибка.
Нейросети — это круто. Но без понимания классического ML вы просто «подключаете модельку», а не строите решения.
➡️ На курсе разберём:
— линейные модели, деревья, PCA, кластеризацию
— метрики, переобучение, bias vs variance
— инженерные подводные камни, которые идут сразу после fit()
🎁 Скидка 10 000₽ по промокодуEarlybird , только до 27 июля.
А ещё — подарок для первых 10 участников: специальный лонгрид по теме курса, чтобы вы могли начать погружение в материал уже сегодня.
🔗 Успей записаться — и начни карьеру в Data Science уже через 3 месяца!
На собеседовании по ML System Design кандидату дают задачу «предсказать отток», а он сразу лезет в нейросети. Красиво, модно, дорого.
Но профи думает иначе:
💭 Логрегрессия? Градиентный бустинг?
💭 А сколько у нас данных и времени?
💭 Что с интерпретируемостью?
Потому что не выбрать адекватную модель — это уже ошибка.
Нейросети — это круто. Но без понимания классического ML вы просто «подключаете модельку», а не строите решения.
➡️ На курсе разберём:
— линейные модели, деревья, PCA, кластеризацию
— метрики, переобучение, bias vs variance
— инженерные подводные камни, которые идут сразу после fit()
🎁 Скидка 10 000₽ по промокоду
А ещё — подарок для первых 10 участников: специальный лонгрид по теме курса, чтобы вы могли начать погружение в материал уже сегодня.
🔗 Успей записаться — и начни карьеру в Data Science уже через 3 месяца!
❤2👍1
😤 Устал листать туториалы, которые не складываются в картину
У тебя в голове уже есть логрегрессии, деревья, метрики и какая-то PCA, но системного понимания всё нет?
Пора с этим разобраться!
Наш курс по классическому ML:
— научит выбирать адекватные модели под задачу
— разложит метрики, переобучение и bias по полочкам
— покажет, что скрывается за fit/predict, и что с этим делать
🔔 До 27 июля по промокодуEarlybird — минус 10.000₽
P.S. Первые 10 участников получат эксклюзивный лонгрид, чтобы начать изучать тему ещё до старта курса.
👉 Поменяй свою жизнь: старт карьеры в AI — успей до закрытия набора!
У тебя в голове уже есть логрегрессии, деревья, метрики и какая-то PCA, но системного понимания всё нет?
Пора с этим разобраться!
Наш курс по классическому ML:
— научит выбирать адекватные модели под задачу
— разложит метрики, переобучение и bias по полочкам
— покажет, что скрывается за fit/predict, и что с этим делать
🔔 До 27 июля по промокоду
P.S. Первые 10 участников получат эксклюзивный лонгрид, чтобы начать изучать тему ещё до старта курса.
👉 Поменяй свою жизнь: старт карьеры в AI — успей до закрытия набора!
👍3
🤔 «Начни сразу с нейросетей — зачем тебе логрегрессия?»
Это один из худших советов для начинающего ML-разработчика. Зрелость — это понимать, где простого достаточно, а не тянуть трансформеры на любую задачу из-за хайпа.
Классика ML — это не допотопная теория, а база (bias/variance, деревья, метрики), без которой не понять Deep Learning.
⚡️ Хотите освоить этот фундамент на реальных задачах? Приходите на наш курс по классическому ML. Только хардкор, только продовые задачи!
📆 Старт — 12 августа.
Для первых 10 участников бонус — специальный лонгрид по теме курса, чтобы вы могли начать разбираться уже сейчас.
🎁 Последний день промокодаEarlybird на скидку 10.000₽.
👉 Не упустите шанс!
Это один из худших советов для начинающего ML-разработчика. Зрелость — это понимать, где простого достаточно, а не тянуть трансформеры на любую задачу из-за хайпа.
Классика ML — это не допотопная теория, а база (bias/variance, деревья, метрики), без которой не понять Deep Learning.
⚡️ Хотите освоить этот фундамент на реальных задачах? Приходите на наш курс по классическому ML. Только хардкор, только продовые задачи!
📆 Старт — 12 августа.
Для первых 10 участников бонус — специальный лонгрид по теме курса, чтобы вы могли начать разбираться уже сейчас.
🎁 Последний день промокода
👉 Не упустите шанс!
👍1
👍3
👍2🤔2