😵💫 Как правильно выбрать LLM для использования в агентских системах
Модели могут выдумывать факты, ссылаться на несуществующие источники и уверенно врать. Особенно часто это происходит при работе с редкими языками или специфическими тематиками.
Поэтому на первом занятии курса «AI-агенты для DS-специалистов» разберем, как с этим бороться. И это только первый из пяти уроков!
🔍 Выбор правильной модели
Не все LLM одинаково полезны. Обсудим квантизованные модели, instruct-версии и мультилингвальные решения. Узнаем, где больше галлюцинаций — в базовых моделях или после дообучения.
💰 Токенизация и стоимость
Разные языки «съедают» разное количество токенов. Покажем, как это влияет на цену API и почему русский текст может стоить дороже английского.
⚡️ Температура и Guardrails
Настройка temperature помогает контролировать креативность модели. А системы Guardrails — отсекать неподходящие ответы еще до генерации.
🧠 Память vs контекст
Казалось бы, зачем RAG, если есть модели с контекстом более 10М токенов? Но не все токены равнозначны. Разберем, когда внешние источники все еще нужны.
В конце создадим простых агентов на LangChain с подключением к внешним источникам и инструментам поиска — и у вас уже будет кейс по созданию собственного AI-агента.
👉 Присоединяйтесь к курсу — приятная цена действует до 14 июня!
Модели могут выдумывать факты, ссылаться на несуществующие источники и уверенно врать. Особенно часто это происходит при работе с редкими языками или специфическими тематиками.
Поэтому на первом занятии курса «AI-агенты для DS-специалистов» разберем, как с этим бороться. И это только первый из пяти уроков!
🔍 Выбор правильной модели
Не все LLM одинаково полезны. Обсудим квантизованные модели, instruct-версии и мультилингвальные решения. Узнаем, где больше галлюцинаций — в базовых моделях или после дообучения.
💰 Токенизация и стоимость
Разные языки «съедают» разное количество токенов. Покажем, как это влияет на цену API и почему русский текст может стоить дороже английского.
⚡️ Температура и Guardrails
Настройка temperature помогает контролировать креативность модели. А системы Guardrails — отсекать неподходящие ответы еще до генерации.
🧠 Память vs контекст
Казалось бы, зачем RAG, если есть модели с контекстом более 10М токенов? Но не все токены равнозначны. Разберем, когда внешние источники все еще нужны.
В конце создадим простых агентов на LangChain с подключением к внешним источникам и инструментам поиска — и у вас уже будет кейс по созданию собственного AI-агента.
👉 Присоединяйтесь к курсу — приятная цена действует до 14 июня!