⚠️ В машинном обучении, как в любви: слишком идеальные предсказания – это подозрительно!
Когда модель слишком прилипчива к тренировочным данным, результат оказывается… ну, как в отношениях, когда всё кажется идеальным, но реальность ломает сердце.
❌ Оверфиттинг (Overfitting) – модель так хорошо запомнила тренировочные данные, что на реальных данных начинает путаться.
💔 В любви: «Я выбрал идеального партнёра по профилю, а в жизни выяснилось, что его «идеальность» – всего лишь иллюзия!»
❌ Андерфиттинг (Underfitting) – модель обучена настолько поверхностно, что предсказывает мэтчи случайным образом.
💔 В любви: «Мне нравятся только люди с именем Александр, а всех остальных я даже не замечаю – бедный фильтр!»
❌ Неправильный выбор фичей (Feature Selection Fail) – если модель опирается на неважные признаки, она предсказывает мэтчи хуже случайности.
💔 В любви: «Ты любишь авокадо? Значит, мы созданы друг для друга!» – а потом оказывается, что это вовсе не про важное.
🎯 На вебинаре мы разобрали, как избежать этих ошибок и создать работающую модель для speed dating, которая на самом деле помогает находить любовь! Вчера мы не просто говорили о любви – мы её предсказывали!
🔥 Спасибо всем, кто был с нами и участвовал!
💘 Как же это было?
Если ты пропустил вебинар или хочешь пересмотреть запись – просто перейди по [ссылке] и получи видео 😉
Когда модель слишком прилипчива к тренировочным данным, результат оказывается… ну, как в отношениях, когда всё кажется идеальным, но реальность ломает сердце.
❌ Оверфиттинг (Overfitting) – модель так хорошо запомнила тренировочные данные, что на реальных данных начинает путаться.
💔 В любви: «Я выбрал идеального партнёра по профилю, а в жизни выяснилось, что его «идеальность» – всего лишь иллюзия!»
❌ Андерфиттинг (Underfitting) – модель обучена настолько поверхностно, что предсказывает мэтчи случайным образом.
💔 В любви: «Мне нравятся только люди с именем Александр, а всех остальных я даже не замечаю – бедный фильтр!»
❌ Неправильный выбор фичей (Feature Selection Fail) – если модель опирается на неважные признаки, она предсказывает мэтчи хуже случайности.
💔 В любви: «Ты любишь авокадо? Значит, мы созданы друг для друга!» – а потом оказывается, что это вовсе не про важное.
🎯 На вебинаре мы разобрали, как избежать этих ошибок и создать работающую модель для speed dating, которая на самом деле помогает находить любовь! Вчера мы не просто говорили о любви – мы её предсказывали!
🔥 Спасибо всем, кто был с нами и участвовал!
💘 Как же это было?
Если ты пропустил вебинар или хочешь пересмотреть запись – просто перейди по [ссылке] и получи видео 😉
Please open Telegram to view this post
VIEW IN TELEGRAM
Что выведет код?
Anonymous Quiz
21%
[1, 0, 0, 0, 4]
20%
[1, 0, 0, 4]
17%
[1, 0, 0, 0, 2, 3, 4]
42%
Error
❗Вакансии «Библиотеки программиста» — ждем вас в команде!
Мы постоянно растем и развиваемся, поэтому создали отдельную страницу, на которой будут размещены наши актуальные вакансии. Сейчас мы ищем:
👉контент-менеджеров для ведения телеграм-каналов
Подробности тут
Мы предлагаем частичную занятость и полностью удаленный формат работы — можно совмещать с основной и находиться в любом месте🌴
Ждем ваших откликов 👾
Мы постоянно растем и развиваемся, поэтому создали отдельную страницу, на которой будут размещены наши актуальные вакансии. Сейчас мы ищем:
👉контент-менеджеров для ведения телеграм-каналов
Подробности тут
Мы предлагаем частичную занятость и полностью удаленный формат работы — можно совмещать с основной и находиться в любом месте🌴
Ждем ваших откликов 👾
job.proglib.io
Вакансии в медиа «Библиотека программиста»
Количество проектов в редакции постоянно растет, так что нам всегда нужны специалисты
Что выведет код?
Anonymous Quiz
63%
{1:3, 2:4}
27%
{1: [3, 4], 2: [3, 4]}
2%
{3:1, 4:2}
8%
{[1, 2]:[3, 4], [1, 2]:[3, 4]}
Forwarded from Proglib.academy | IT-курсы
Big Data и Data Science применяются не только в IT-гигантах, но и в некоммерческом секторе, где технологии анализа данных помогают оптимизировать работу организаций, собирать средства и оказывать помощь эффективнее.
▪️ Как некоммерческие организации используют Data Science.
▪️ Оптимизация фондов и финансирования с помощью аналитики.
▪️ Роль прогнозных моделей в благотворительности.
▪️ Кейсы Amnesty International, Khan Academy и DataKind.
Please open Telegram to view this post
VIEW IN TELEGRAM