SQL и Анализ данных
12.3K subscribers
598 photos
52 videos
3 files
629 links
Базы данных и всё, что с ними связано!

Сотрудничество: @haarrp

№ 5820974151
加入频道
Forwarded from Machinelearning
🌟 Mixture-of-Recursions: концепция селективного ризонинга.

Архитектура Mixture-of-Recursions (MoR), предложенная Google в соавторстве с KAIST AI объединяет в едином фреймворке традиционные подходы разделения параметров и адаптивные вычисления, заставляя модель думать над каждым токеном с разной глубиной.

Под капотом MoR - рекурсивный трансформер, который прогоняет входные данные через один и тот же блок слоев несколько раз. Но главная фишка в том, что количество этих прогонов, или глубина рекурсии, не фиксированное, а динамическое и определяется для каждого токена индивидуально.

Легковесный обучаемый роутер анализирует токен и решает, сколько вычислительных усилий на него потратить. Простые слова могут пройти всего один цикл рекурсии, в то время как семантически нагруженные термины отправятся на более глубокую обработку из нескольких циклов.

Это дает два главных преимущества:

🟢Во-первых, модель тратит вычислительные ресурсы только на те токены, которые все еще активны на данной глубине рекурсии. Токены, которые вышли раньше, в дальнейших вычислениях не участвуют. Это уже само по себе сокращает объем вычислений.

🟢Во-вторых, что самое интересное для инженеров, MoR позволяет реализовать очень эффективное KV caching. Вместо того чтобы хранить в памяти огромный кеш для каждого виртуального слоя, модель кеширует KV-пары только для активных в данном цикле рекурсии токенов. Это кардинально снижает требования к памяти и ускоряет инференс, решая одну из главных головных болей при развертывании LLM.

При одинаковом бюджете на обучение (в FLOPs) и меньшем размере самой модели MoR показывает более низкую перплексию и лучшие результаты в few-shot задачах, чем стандартные и рекурсивные аналоги.

▶️ Попробовать MoR можно на практике - код для трейна и оценки доступен в репозитории проекта на Github.


📌Лицензирование: Apache 2.0 License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Architecture #MoR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍1🔥1
Forwarded from Python/ django
🖥 Transfunctions — библиотека транзакционных функций на Python

Transfunctions — это инструмент для создания чистых, переиспользуемых и управляемых пайплайнов из функций. Подходит для задач, где нужно чётко контролировать каждый шаг выполнения.

Что такое транзакционные функции?

Это функции, которые:
• имеют чёткое начало и откат (rollback) — как в базах данных
• могут быть объединены в цепочки, где каждая часть знает, как отменить свои действия
• обрабатывают ошибки и контекст централизованно
• позволяют писать бизнес-логику без дублирования и хаоса

Что умеет Transfunctions:
• Объединение функций в контролируемые пайплайны
• Поддержка отката и логирования
• Контекстное выполнение (например, сессии, транзакции, данные)
• Минимум шаблонного кода

Подходит для ETL, финансовых операций, инфраструктурных обработчиков и сценариев с проверками и откатами.

pip install transfunctions

🔗 GitHub: https://github.com/pomponchik/transfunctions

#python #pipeline #transactions #opensource #architecture

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥32