Математика Дата саентиста
13.5K subscribers
402 photos
134 videos
37 files
349 links
加入频道
Теория множеств - для программиста

1 (продвинутый) ➤ ОСНОВЫ
2. ПРАКТИКА
3. ПРАКТИКА - 2
4. ПРАКТИКА - 3
5. ЗАДАЧИ С ЗАКОВЫРОЧКОЙ -4
6. ПРАКТИКА - 5
7. МЕТОД ДВУХ ВКЛЮЧЕНИЙ - ПРИМЕР
8. МЕТОД ДВУХ ВКЛЮЧЕНИЙ - ПРАКТИКА
9. МЕТОД ДВУХ ВКЛЮЧЕНИЙ - ПРАКТИКА
10. МЕТОД ДВУХ ВКЛЮЧЕНИЙ - ПРАКТИКА

#video #math

https://www.youtube.com/watch?v=xRjm-PqklFk&list=PLe-iIMbo5JOJlDz3wWfMF40A8Id8Nll0b&ab_channel=%D0%9F%D1%80%D0%B0%D0%BA%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5Python
👍72🔥2
Цикл лекций о великих математиках

1. Обзор жизни и исследований Леонарда Эйлера
2. Что таĸое Эĸспонента? Значение в 0
3. Что таĸое Эĸспонента? Значение в 1
4. Экспонента по Ньютону. Чему равно е
5. Еще одна Экспонента
6. Формула Эйлера
7. Быстрое вычисление числа π по Эйлеру
8. Путь Эйлера
9. Топология
10. Приложение 1: “Футбольный мяч”

#video #math

https://www.youtube.com/watch?v=Nd5VJAR3ZPw&list=PLmu_y3-DV2_k-Tnu_L-uZ8FMbTWGce-ED&ab_channel=%D0%A6%D0%98%D0%A2%D0%9C%D0%AD%D0%BA%D1%81%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82%D0%B0

@data_math
🔥10👍65👎1
Вероятность и статистика

1. Переменные и метрики
2. Генераторы и Монте-Карло
3. ЗБЧ и ЦПТ
4. Монте-Карло: практика
5. Проверка гипотез и p-value
6. А/Б тесты: пропорции
7. А/Б тесты: непрерывные переменные
8. Множественная проверка гипотез
9. Ревью курса + вопросы и ответы

#video #math

https://www.youtube.com/watch?v=S3WAjnBC6CI&list=PLQJ7ptkRY-xbHLLI66KdscKp_FJt0FsIi
14👍11🔥61
Forwarded from Machinelearning
⚡️Qwen выпустили Qwen2-Math, размером 1.5B, 7B и 72B.

> 84 (72B), 75 (7B), 69,4 (1,5B) баллов на MATH
> > 72B SoTA на MMLU STEM
> Лицензия Apache 2.0 для версии 1.5B и 7B, 72B выпущена под лицензией Qianwen
> Основана на той же архитектуре, что и Qwen 2

Флагманская модель Qwen2-Math-72B-Instruct превосходит проприетарные модели, включая GPT-4o и Claude 3.5, в выполнении задач, связанных с математикой 🔥

> Интеграция с Transformers! 🤗

Hf
Github
Tech report
Scope

@ai_machinelearning_big_data

#opensource #Qwen #math
👍105🔥2
Математика

1. Самые большие числа
2. Сделал генетический алгоритм | симуляция ЭВОЛЮЦИИ
3. ИИ учится ходить
4. Симуляция естественного отбора
5. Что будет, если взять корень из отрицательного числа? | Фракталы
6. Пишем свой движок 3D-графики
7. Сделал симуляцию черной дыры в 3D
8. Что больше бесконечности?
9. Как выглядит самая сложная задача математики? Фрактал Коллатца

#video #math

https://www.youtube.com/watch?v=qsbQki6Ikfo&list=PLyc_E1fmJGpIqWsdgX-j5RxIX1M225UlD&ab_channel=Onigiri

@data_math
👍94🔥3👎1
Forwarded from Machinelearning
🌟DeepSeek-Prover: Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search.

DeepSeek-Prover-V1.5 - набор из языковых моделей для доказательства теорем в Lean 4.
"V1.5" означает обновление DeepSeek-Prover-V1 с некоторыми ключевыми нововведениями.

Во-первых, процесс обучения: предварительная подготовка на базе DeepSeekMath, затем контрольная работа с набором данных, включающим логические комментарии на естественном языке и код Lean 4. Это устраняет разрыв между рассуждениями на естественном языке и формальным доказательством теоремы. В набор данных также входит информация о промежуточном тактическом состоянии, которая помогает модели эффективно использовать обратную связь с компилятором.

Во-вторых, проводится обучение с подкреплением, используя алгоритм GRPO для изучения обратной связи с помощником по проверке. Тут выравнивается соответствие модели формальным спецификациям системы проверки.

В-третьих, RMaxTS, варианте поиска в дереве по методу Монте-Карло. Он присваивает встроенные вознаграждения на основе изучения тактического пространства состояний, побуждая модель генерировать различные пути доказательства. Это приводит к более обширному исследованию пространства доказательств.

В результате получился набор моделей с абсолютной точностью генерации в 46,3% на тестовом наборе miniF2F. Этот показатель лучше, чем у GPT-4 и моделей RL, специализирующихся на доказательстве теорем.

Набор DeepSeek-Prover:

🟠DeepSeek-Prover-V1.5 Base. Идеально подходит для первоначального изучения и понимания возможностей модели и основ для формальных математических рассуждений, но требует дальнейшего обучения для оптимальной работы;
🟠DeepSeek-Prover-V1.5 SFT. Модель для задач, требующих умеренных навыков доказательства теорем за счет рассуждений на естественном языке и информации о тактическом состоянии.
🟠DeepSeek-Prover-V1.5 RL. Рекомендуется для решений, требующих высочайшей точности и производительности при формальном доказательстве теорем. К SFT-версии добавлены дополнительная оптимизация на основе Proof Assistant Feedback и обучение с подкреплением.

▶️Установка и запуск:
# Clone the repository:
git clone --recurse-submodules [email protected]:deepseek-ai/DeepSeek-Prover-V1.5.git
cd DeepSeek-Prover-V1.5

# Install dependencies:
pip install -r requirements.txt

# Build Mathlib4:
cd mathlib4
lake build

# Run paper experiments:
python -m prover.launch --config=configs/RMaxTS.py --log_dir=logs/RMaxTS_results



📌Лицензирование кода репозитория: MIT license

📌Лицензирование моделей: DEEPSEEK License


🟡Набор моделей
🟡Arxiv
🟡Датасет
🟡Сообщество в Discord
🖥Github [ Stars: 53 | Issues: 0 | Forks: 1]


@ai_machinelearning_big_data

#AI #LLM #Math #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍82🔥21
Forwarded from Machinelearning
🌟 OpenMathInstruct-2: математический датасет и набор моделей от NVIDIA.

OpenMathInstruct-2 состоит из 14 млн. пар "вопрос-решение" (примерно 600 тысяч уникальных вопросов) и является одним из крупнейших общедоступных наборов данных для обучения LLM в математике.

Набор данных создан на основе Llama-3.1-405B-Instruct путем синтеза решений для существующих вопросов из наборов данных MATH и GSM8K и генерации новых задач и решений.

Результаты абляционных экспериментов, которые проводились для поиска оптимальных параметров синтеза, показали, что:

🟢формат решения имеет значение, причем чрезмерно подробные решения негативно сказываются на производительности модели;

🟢данные, сгенерированные сильной моделью-учителем, превосходят по качеству данные, полученные от более слабой модели;

🟢процесс обучения устойчив к наличию до 20% решений низкого качества;

🟢разнообразие вопросов имеет решающее значение для масштабирования данных.

Итоговые данные, включенные в датасет прошли тщательную деконтаминацию с использованием конвейера lm-sys и ручной проверки на поиск дубликатов с тестовыми наборами данных.

OpenMathInstruct-2 показал высокую эффективность при обучении LLM.

Модель Llama3.1-8B-Base, обученная на OpenMathInstruct-2, превзошла Llama3.1-8B-Instruct на 15,9% по точности на наборе данных MATH, а OpenMath2-Llama3.1-70B обошла Llama3.1-70B-Instruct на 3,9%.

Датасет выпущен в 3-х размерностях: полный набор (примерно 7.5 GB) и уменьшенные версии train_1M (640 Mb), train_2M (1.3 Gb) и train_5M (3.1 Gb).

▶️ Модели, дообученные на этом датасете:

🟠OpenMath2-Llama3.1-70B, в формате Nemo, квантованные версии GGUF (от 3-bit до 8-bit);

🟠OpenMath2-Llama3.1-8B, в формате Nemo, квантованные версии GGUF (от 2-bit до 8-bit).


📌Лицензирование датасета : CC-BY-4.0 License.

📌Лицензирование моделей: Llama 3.1 Community License.


🟡Набор моделей
🟡Arxiv
🟡Датасет


@ai_machinelearning_big_data

#AI #ML #LLM #MATH #NVIDIA #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥3
Forwarded from Machinelearning
📌Как линейная алгебра может помочь при разработке web-приложения.

Интересная и познавательная статья разработчика Ивана Шубина о том, как он использовал матрицы для создания интерактивного редактора диаграмм Schemio.

Изначально, редактор позволял создавать простые фигуры и манипулировать ими, но с введением иерархии объектов возникла необходимость в сложных преобразованиях координат. Матрицы стали ключом к решению этой проблемы, позволяя эффективно управлять перемещением, вращением и масштабированием объектов.

Для преобразования глобальных и локальных координат между собой использовались матричные преобразования. Умножение матриц дало возможность комбинировать преобразования, а инверсия матрицы помогает переводить координаты из глобальных в локальные.

Иван подробно описывает, как матрицы помогают управлять поворотом и масштабированием объектов относительно опорной точки и как они используются при монтировании и демонтировании объектов, чтобы избежать нежелательных коллизий.

Таким образом, матричная математика стала решением для расширения возможностей редакторе Schemio.

🔜 Читать полную версию статьи

#Math #LinearAlgebra #Webdev
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍102🔥2
Кодирование сигналов

1. Код Грея
2. Применение битов четности
3. Код Хемминга
4. Синхронизация с помощью избыточного кода
5. Скремблирование
6. Кодирование битов при последовательной передаче
7. Битстаффинг
8. Передатчик Манчестер II
9. Приемник кода Манчестер II
10. Двунаправленная передача импульсов по одной линии

#video #math

https://www.youtube.com/watch?v=C4cU4gldP5c&list=PL1VvMJF0dnhrcJZBhrAr8OWZKkCtbIBGQ&ab_channel=%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0%D0%B8%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%B8%D0%BA%D0%B0%D0%B4%D0%BB%D1%8F%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%81%D1%82%D0%BE%D0%B2

@data_math
10👍7👀1
Media is too big
VIEW IN TELEGRAM
🎲 Вероятностные модели и функции потерь. Машинное обучение полный курс. Урок 8

- Видео
- Урок 1 / Урок2 / Урок3 / Урок4 / Урок5 /
- Урок6/ Урок7
- Colab
-Полный курс

#ml #math #mlmath #probability #машинноеобучение
🔥7👍32
This media is not supported in your browser
VIEW IN TELEGRAM
🎯 Одна из самых красивых идей в математике — вычисление площади фигуры с помощью случайных точек

Не верится, что такое возможно?
Смотри на анимацию ниже: мы бросаем случайные точки в квадрат и считаем, сколько из них попали в круг.
Так можно приближённо вычислить площадь круга — а значит и значение π!

🔍 Как это работает:
1. Берём квадрат, в который вписан круг (например, единичный)
2. Бросаем N случайных точек в квадрат
3. Считаем, сколько из них попало внутрь круга
4. Отношение количества «внутренних» точек к общему числу даёт приближение площади круга

👉 Это называется метод Монте‑Карло — простой, но мощный инструмент для численных приближений.

@data_math

#math #geometry #montecarlo #visualmath
29👍13🔥5👎1