data будни
1.44K subscribers
119 photos
1 video
2 files
232 links
работаю инженером данных и пишу в основном про это.

Профильные ссылки с коротким резюме (статьи, доклады, подкасты), иногда «софтовое» — например, про поиск работы.
加入频道
нужны ли алгоритмы программистам?

холиварный выпуск Moscow Python подкаста: Григорий Петров и Злата Обуховская накидывали на вентилятор, направленный на Асю Воронцову из Яндекса.

Тезис №1: знание алгоритмов нужны только тем, кто работает с высоконагруженными сервисами, где важна эффективности. Типа ядра Линукса или поисковика Яндекса. (важно отметить: даже в самом Яндексе не все работают с хайлоадом)

Тезис №2: внедрение алгоритмов в код ухудшает его читаемость. Это важно, т.к. код больше читается, чем пишется.

Тезис №3: времязатраты на написание эффективного кода не всегда окупается. Можно потратить две недели на код, который даёт всего 5% в сравнении с уже готовой библиотекой.

Тезис №4: профилировщик — лучший друг программиста. Это снимает большинство вопросов с эффективностью. Например, он подскажет, если вдруг код зайдёт в цикл.

Тезис №5: в больших компаниях спрашивают знание алгоритмов (и умение их писать на бумажке) не только ради самого знания, но и просто как ещё один фильтр, чтобы отсеять людей, которые уже приложили усилия и вызубрили редко используемую информацию.

#data_podcast в iTunes и overcast

#python
#algorithms
Методы управления разработкой

В крупной компании команда несколько лет работала над продуктом. Когда его в итоге показали конечному заказчику, оказалось, что проект уже не нужен и его просто выбросили. Получается, много человек потратили много лет своей жизни впустую.

Так работает метод управления разработкой «водопад» (waterfall). Задачи идут последовательно одна за другой: два месяца на исследование, несколько лет на разработку, ещё сколько-то на внедрение. До самого конца заказчик ничего не видит — ему нужен только конечный результат.

Другой метод — аджайл. В Спотифай применяют как раз его: короткие итерации с ощутимым итогом после каждой — Spotify Model, развившееся в Spotify Rhythm.

из подкаста «Запуск завтра»
https://yangx.top/ctodaily/1157

#data_podcast
АйТи в строительной компании ПИК

послушал выпуск подкаста «запуск завтра» с главным айтишником из ПИКа.

Дом проектируется как цифровой объект, где каждая дверь и труба описана как сущность с кучей параметров. В 3Д это можно визуализировать как угодно по «слоям».

Проектирование дома — процесс на несколько лет.

Строительный процесс поставлен на поток: параллельно ищутся участки под стройку, происходит анализ доступных участков, на своих участках строятся дома, построенные дома продаются, а уже проданные — обслуживаются.

Отдельная тема выпуска — про введение подобных трансформаций в компании. Как исчезают рабочие места «операторов ввода информации в ЭВМ» и автоматизируется рутинная работа с подрядчиками. С кем-то договориться, других взять большинством, к иным «зайти сверху», с остальными — расстаться.

https://yangx.top/ctodaily/1158

#data_podcast
Отличия ML и DS

Глеб Синяков — аналитик-разработчик в Тинькофф — обсудил с ребятами из Moscow Python разницу в названиях профессий.

почему специалистов по машинному обучению называют дата саентистами?

пошло от того, что 5 лет назад «дата саентист» умел только в математику. К нему приставляли отдельного разработчика — «переводчика на питон». Плюс к этому бэкэндера, который пытается из моделей делать продукт.

Постепенно всё пришло к тому, что весь спектр задач работы с данными надо уметь самому. Разделение ролей идёт на больших проектах и больших данных.

→ то есть не Data Scientist, а ML Engineer


- код в Jupyter notebooks — боль разработчика: сама среда располагает к беспорядочному коду, где даже думать не хочется о модульности и правильном коде.

Как бороться? Писать законченные изолированные модули в PyCharm и импортировать их в ноутбуки. И уже там открывать файлы и тестировать работу.

⁃ Как потом хранить эти ноутбуки в Git? Складывать всё в отдельную ветку и потом пушить одним жирным коммитом.

Минимальный продукт от ML инженера — это pip-install-ируемый модуль, чтобы любой другой человек мог его включить и запустить на своей машине.

Подкаст в iTunes и Overcast

#data_podcast
#data_podcast

Запуск Завтра с Давидом Яном (ABBY, Yva)
от создания словаря для перевода в 1989 году до создания автономного дома со своим сознанием. Где-то между этим был Fine Reader, ABBY и сервис для прогнозирования выгорания сотрудников по переписке

Habr Special с Виктором Кантор, МТС
что такое биг дата, кто её может применять и что она умеет

Data Alone Is Not Enough: The Evolution of Data Architectures — a16z венчурные инвесторы из долины обсуждают в общих чертах историю и подходы работы с данными

The Rise of the Analytics Engineer with Claire Carroll
сложно быть «просто» аналитиком, когда постоянно очищать данные и приводить их к единому формату. Так появляется профессия Analytics Engineer (это не ещё одно название Data Engineer — это другое)
Алексей Макаров в гостях у подкаста «Каждый может» рассказал про аналитику в целом и аналитиков данных в частности. Получилась такая хорошая беседа, чтобы понять что это за отрасль такая и чем занимаются аналитики.

Алексей давно в отрасли, ведёт канал @datalytx

Слушать в iTunes и Overcast

Порадовался, когда Алексей упомянул мой кейс про поиск работы: когда я по данным с фитнес трекера опознал человека, чьи это были данные ^_^
https://sashamikhailov.ru/blog/all/welltory-data-engineer/

#data_podcast
Послушать:

Лену Бунину — гендиректора Яндекса и профессора МГУ про то нужна ли математика в программировании.

Вместе с ведущим — Салатом Галимовым — прошлись по всем сервисам Яндекса и прикинули сколько там математики. В среднем по рынку примерно 20% программистам нужна математика. В Яндекса — примерно половине. Например, сделать распределённую устойчивую и быструю базу данных.

Интересно, что математика иногда уходит в полную абстракцию и не совсем понятно как это можно применить в реальном мире. Так было и с популярными сейчас нейросетями — математическую основу для придумали ещё в 70-х, но до 2000-х годов не было доступной компьютерной мощности для их применения.

https://yangx.top/ctodaily/1270


Анализ данных и Python

Суровые программисты из Moscow Python пригласили BI разработчика поговорить про анализ данных

Интересно, что ребята быстро пробежались перечислили основные инструменты жду анализа данных и потом долго обсуждали критическое мышление и общие когнитивные способности. Набор обсуждаемых книг тоже получился нетипичным: Thinking Fast and Slow Даниела Канемана и «Слепой часовщик» Ричарда Докинза.

Подкаст в Apple Podcasts

#data_podcast