Forwarded from Малоизвестное интересное
Крах ИИ-пузырей будет круче, чем крах доткомов, а сегодняшние модели не проживут и года.
Так говорит Мостак – один из немногих в мире ИИ, кто знает, о чем говорит.
Эмад Мостак - сооснователь и генеральный директор компании StabilityAI, материнской компании Stable Diffusion. Он уже привлек более 110 млн долларов в компанию Stability, а последний раунд оценивает компанию в 4 млрд долларов.
Во вчерашнем подкасте на 20VC Мостак сказал много такого, во что верится с трудом. Но скорее всего, он окажется прав, говоря вот о чем:
1) О больших моделях.
• Почему ни одна из сегодняшних моделей не будет использоваться через год.
• Почему все модели необъективны, но с этим можно бороться.
• Почему галлюцинации - это особенность, а не ошибка.
• Почему размер модели больше не имеет значения.
• Почему скоро появятся национальные модели, заданные культурам и национальными ценностями.
2) Кто победит: Киты Бигтеха или стартапы.
• Через пару лет будет только 5 ключевых компаний в области ИИ.
• Как оценить стратегию Google в области ИИ после новостей на прошлой неделе.
• Будет ли успешной недавняя интеграция Google и Deepmind.
• Почему Цукерберг теперь признает, что игра в метаверс была ошибкой.
• Что ждать от Amazon - темной лошадки в этой гонке
3) Что произойдет за 12 месяцев.
• Почему Эмад считает, что ИИ-пузырь будет больше, чем пузырь доткомов.
• Почему Эмад полагает, что крупнейшими компаниями, встроенными в ИИ в ближайшие 12 месяцев, будут компании, работающие в сфере услуг
• Почему Индия и развивающиеся рынки будут внедрять ИИ быстрее всех остальных.
• Что произойдет с экономикой, в которой большие сегменты зависят от работы людей, которых заменит ИИ.
И это еще не все в часовом подкасте, который я вам рекомендую.
#ИИ #LLM #Будущее
Так говорит Мостак – один из немногих в мире ИИ, кто знает, о чем говорит.
Эмад Мостак - сооснователь и генеральный директор компании StabilityAI, материнской компании Stable Diffusion. Он уже привлек более 110 млн долларов в компанию Stability, а последний раунд оценивает компанию в 4 млрд долларов.
Во вчерашнем подкасте на 20VC Мостак сказал много такого, во что верится с трудом. Но скорее всего, он окажется прав, говоря вот о чем:
1) О больших моделях.
• Почему ни одна из сегодняшних моделей не будет использоваться через год.
• Почему все модели необъективны, но с этим можно бороться.
• Почему галлюцинации - это особенность, а не ошибка.
• Почему размер модели больше не имеет значения.
• Почему скоро появятся национальные модели, заданные культурам и национальными ценностями.
2) Кто победит: Киты Бигтеха или стартапы.
• Через пару лет будет только 5 ключевых компаний в области ИИ.
• Как оценить стратегию Google в области ИИ после новостей на прошлой неделе.
• Будет ли успешной недавняя интеграция Google и Deepmind.
• Почему Цукерберг теперь признает, что игра в метаверс была ошибкой.
• Что ждать от Amazon - темной лошадки в этой гонке
3) Что произойдет за 12 месяцев.
• Почему Эмад считает, что ИИ-пузырь будет больше, чем пузырь доткомов.
• Почему Эмад полагает, что крупнейшими компаниями, встроенными в ИИ в ближайшие 12 месяцев, будут компании, работающие в сфере услуг
• Почему Индия и развивающиеся рынки будут внедрять ИИ быстрее всех остальных.
• Что произойдет с экономикой, в которой большие сегменты зависят от работы людей, которых заменит ИИ.
И это еще не все в часовом подкасте, который я вам рекомендую.
#ИИ #LLM #Будущее
Forwarded from Малоизвестное интересное
На Земле появился самосовершенствующийся ИИ.
Он эволюционирует путем мутаций в миллиарды раз быстрее людей.
Ну вот и свершилось. Разработчики Google DeepMind представили прорывную разработку – «Promptbreeder (PB): самореферентное самосовершенствование через ускоренную эволюцию».
Чем умнее текстовые подсказки получает большая языковая модель (LLM), тем умнее будут её ответы на вопросы и предлагаемые ею решения. Поэтому создание оптимальной стратегии подсказок - сегодня задача №1 при использовании LLM. Популярные стратегии подсказок ("цепочка мыслей", “планируй и решай” и тд), могут значительно улучшить способности LLM к рассуждениям. Но такие стратегии, разработанные вручную, часто неоптимальны.
PB решает эту проблему, используя эволюционный механизм итеративного улучшения подсказок. Колоссальная хитрость этого механизма в том, что он не просто улучшает подсказки, а с каждым новым поколением улучшает свою способность улучшать подсказки.
Работает следующая эволюционная схема.
1. Управляемый LLM, PB генерирует популяцию популяцию единиц эволюции, каждая из которых состоит из 2х «подсказок-решений» и 1й «подсказки мутаций».
2. Затем запускается бинарный турнирный генетический алгоритм для оценки пригодности мутантов на обучающем множестве, чтобы увидеть, какие из них работают лучше.
3. Циклически переходя к п. 1, этот процесс превращается в эволюцию поколений «подсказок-решений».
В течение нескольких поколений PB мутирует как «подсказки-решений», так и «подсказки мутаций», используя пять различных классов операторов мутации.
Фишка схемы в том, что со временем мутирующие «подсказки-решения» делаются все умнее. Это обеспечивается генерацией «подсказок мутаций» — инструкций о том, как мутировать, чтобы лучше улучшать «подсказки-решения».
Таким образом, PB постоянно совершенствуется. Это самосовершенствующийся, самореферентный цикл с естественным языком в качестве субстрата. Никакой тонкой настройки нейронной сети не требуется. В результате процесса получаются специализированные подсказки, оптимизированные для конкретных приложений.
Первые эксперименты показали, что в математических и логических задачах, а также в задачах на здравый смысл и классификацию языка (напр. выявление языка вражды) PB превосходит все иные современные методы подсказок.
Сейчас PB тетируют на предмет его пригодности для выстраивания целого "мыслительного процесса": например, стратегии с N подсказками, в которой подсказки применяются условно, а не безусловно. Это позволит применять PB для разработки препрограмм LLM-политик, конкурирующих между собой в состязательном сократовском диалоге.
Почему это большой прорыв.
Создание самореферентных самосовершенствующихся систем является Святым Граалем исследований ИИ. Но предыдущие самореферентные подходы основывались на дорогостоящих обновлениях параметров модели, что стопорилось при масштабировании из-за колоссального количества параметров в современных LLM, не говоря уже о том, как это делать с параметрами, скрытыми за API.
Значит ли, что самосовершенствующийся ИИ вот-вот превзойдет людей?
Пока нет. Ибо PB остается ограниченным по сравнению с неограниченностью человеческих мыслительных процессов.
• Топология подсказок остается фиксированной - PB адаптирует только содержание подсказки, но не сам алгоритм подсказки. Одна из интерпретаций мышления заключается в том, что оно является реконфигурируемым открытым самоподсказывающим процессом. Если это так, то каким образом формировать сложные мыслительные стратегии, как их генерировать и оценивать - пока не ясно.
• Простой эволюционный процесс представляет собой одну из рамок, в которой может развиваться стратегия мышления. Человеческий опыт свидетельствует о наличии множества перекрывающихся иерархических селективных процессов. Помимо языка, наше мышление включает в себя интонации, образы и т.д., что представляет собой мультимодальную систему. А этого у PB нет… пока.
#ИИ #LLM #Вызовы21века #AGI
Он эволюционирует путем мутаций в миллиарды раз быстрее людей.
Ну вот и свершилось. Разработчики Google DeepMind представили прорывную разработку – «Promptbreeder (PB): самореферентное самосовершенствование через ускоренную эволюцию».
Чем умнее текстовые подсказки получает большая языковая модель (LLM), тем умнее будут её ответы на вопросы и предлагаемые ею решения. Поэтому создание оптимальной стратегии подсказок - сегодня задача №1 при использовании LLM. Популярные стратегии подсказок ("цепочка мыслей", “планируй и решай” и тд), могут значительно улучшить способности LLM к рассуждениям. Но такие стратегии, разработанные вручную, часто неоптимальны.
PB решает эту проблему, используя эволюционный механизм итеративного улучшения подсказок. Колоссальная хитрость этого механизма в том, что он не просто улучшает подсказки, а с каждым новым поколением улучшает свою способность улучшать подсказки.
Работает следующая эволюционная схема.
1. Управляемый LLM, PB генерирует популяцию популяцию единиц эволюции, каждая из которых состоит из 2х «подсказок-решений» и 1й «подсказки мутаций».
2. Затем запускается бинарный турнирный генетический алгоритм для оценки пригодности мутантов на обучающем множестве, чтобы увидеть, какие из них работают лучше.
3. Циклически переходя к п. 1, этот процесс превращается в эволюцию поколений «подсказок-решений».
В течение нескольких поколений PB мутирует как «подсказки-решений», так и «подсказки мутаций», используя пять различных классов операторов мутации.
Фишка схемы в том, что со временем мутирующие «подсказки-решения» делаются все умнее. Это обеспечивается генерацией «подсказок мутаций» — инструкций о том, как мутировать, чтобы лучше улучшать «подсказки-решения».
Таким образом, PB постоянно совершенствуется. Это самосовершенствующийся, самореферентный цикл с естественным языком в качестве субстрата. Никакой тонкой настройки нейронной сети не требуется. В результате процесса получаются специализированные подсказки, оптимизированные для конкретных приложений.
Первые эксперименты показали, что в математических и логических задачах, а также в задачах на здравый смысл и классификацию языка (напр. выявление языка вражды) PB превосходит все иные современные методы подсказок.
Сейчас PB тетируют на предмет его пригодности для выстраивания целого "мыслительного процесса": например, стратегии с N подсказками, в которой подсказки применяются условно, а не безусловно. Это позволит применять PB для разработки препрограмм LLM-политик, конкурирующих между собой в состязательном сократовском диалоге.
Почему это большой прорыв.
Создание самореферентных самосовершенствующихся систем является Святым Граалем исследований ИИ. Но предыдущие самореферентные подходы основывались на дорогостоящих обновлениях параметров модели, что стопорилось при масштабировании из-за колоссального количества параметров в современных LLM, не говоря уже о том, как это делать с параметрами, скрытыми за API.
Значит ли, что самосовершенствующийся ИИ вот-вот превзойдет людей?
Пока нет. Ибо PB остается ограниченным по сравнению с неограниченностью человеческих мыслительных процессов.
• Топология подсказок остается фиксированной - PB адаптирует только содержание подсказки, но не сам алгоритм подсказки. Одна из интерпретаций мышления заключается в том, что оно является реконфигурируемым открытым самоподсказывающим процессом. Если это так, то каким образом формировать сложные мыслительные стратегии, как их генерировать и оценивать - пока не ясно.
• Простой эволюционный процесс представляет собой одну из рамок, в которой может развиваться стратегия мышления. Человеческий опыт свидетельствует о наличии множества перекрывающихся иерархических селективных процессов. Помимо языка, наше мышление включает в себя интонации, образы и т.д., что представляет собой мультимодальную систему. А этого у PB нет… пока.
#ИИ #LLM #Вызовы21века #AGI
Forwarded from Малоизвестное интересное
Китай догнал США по ИИ и к лету обещает обойти.
Китайские языковые модели догнали GPT-4, и теперь главный вопрос - сможет ли OpenAI до лета выпустить GPT-5 или Китай уйдет в отрыв.
Январь 2024 оказался для Китая триумфальным в области ИИ. Триумф этот и количественный, и качественный.
Количественный: среди 150+ больших языковых моделей (LLM) китайского производства (для справки, в России таких 4), 40 прошли госпроверку и уже доступны для широкого применения [1]
Качественный: две китайских LLM вплотную приблизились по большинству показателей к самой мощной в мире последней версии GPT-4 Turbo.
Это:
• iFlyTek Spark 3.5 LLM от компании iFlyTek, достигшая 96% производительности GPT-4 Turbo в кодировании и 91% GPT-4 в мультимодальных возможностях [2]
• ChatGLM4 от компании Zhipu: базовые возможности на английском языке составляют 91-100% от GPT-4 Turbo [3], а на китаяском языке 95-116% от GPT-4 Turbo [4] (подробней здесь [5])
И iFlyTek, и Zhipu объявили о запланированных к лету выпусках новых версий своих LLM, которые будут на 20-60% сильнее.
И если OpenAI не успеет в те же сроки выпустить GPT-5, то ситуация на шахматной доске мировой конкуренции в области ИИ может кардинально измениться. Дело в том, что компании США всегда были лидерами в этой области. Насколько удачно они смогут конкурировать в роли догоняющих, не знает никто.
N.B. И iFlyTek, и Zhipu заявляют, что их модели оптимизированы для работы на китайском «железе». Если это правда, то главный «удушающий прием» со стороны США – запрет на экспорт мощного ИИ-«железа», - Китай сумел обойти. Следствие этого будет стратегический перелом в ИИ гонке США и Китая. Что даже круче тактического превосходства в производительности отдельных моделей.
#ИИгонка #США #Китай #LLM
1 https://www.scmp.com/tech/tech-trends/article/3250177/china-approves-14-large-language-models-and-enterprise-applications-beijing-favours-wider-ai
2 https://www.ithome.com/0/748/030.htm
3 https://pic2.zhimg.com/80/v2-8aa028205cd53693af8f324029c62fa5_1440w.webp
4 https://pic2.zhimg.com/80/v2-8aa028205cd53693af8f324029c62fa5_1440w.webp
5 https://sfile.chatglm.cn/zp-story.pdf
Китайские языковые модели догнали GPT-4, и теперь главный вопрос - сможет ли OpenAI до лета выпустить GPT-5 или Китай уйдет в отрыв.
Январь 2024 оказался для Китая триумфальным в области ИИ. Триумф этот и количественный, и качественный.
Количественный: среди 150+ больших языковых моделей (LLM) китайского производства (для справки, в России таких 4), 40 прошли госпроверку и уже доступны для широкого применения [1]
Качественный: две китайских LLM вплотную приблизились по большинству показателей к самой мощной в мире последней версии GPT-4 Turbo.
Это:
• iFlyTek Spark 3.5 LLM от компании iFlyTek, достигшая 96% производительности GPT-4 Turbo в кодировании и 91% GPT-4 в мультимодальных возможностях [2]
• ChatGLM4 от компании Zhipu: базовые возможности на английском языке составляют 91-100% от GPT-4 Turbo [3], а на китаяском языке 95-116% от GPT-4 Turbo [4] (подробней здесь [5])
И iFlyTek, и Zhipu объявили о запланированных к лету выпусках новых версий своих LLM, которые будут на 20-60% сильнее.
И если OpenAI не успеет в те же сроки выпустить GPT-5, то ситуация на шахматной доске мировой конкуренции в области ИИ может кардинально измениться. Дело в том, что компании США всегда были лидерами в этой области. Насколько удачно они смогут конкурировать в роли догоняющих, не знает никто.
N.B. И iFlyTek, и Zhipu заявляют, что их модели оптимизированы для работы на китайском «железе». Если это правда, то главный «удушающий прием» со стороны США – запрет на экспорт мощного ИИ-«железа», - Китай сумел обойти. Следствие этого будет стратегический перелом в ИИ гонке США и Китая. Что даже круче тактического превосходства в производительности отдельных моделей.
#ИИгонка #США #Китай #LLM
1 https://www.scmp.com/tech/tech-trends/article/3250177/china-approves-14-large-language-models-and-enterprise-applications-beijing-favours-wider-ai
2 https://www.ithome.com/0/748/030.htm
3 https://pic2.zhimg.com/80/v2-8aa028205cd53693af8f324029c62fa5_1440w.webp
4 https://pic2.zhimg.com/80/v2-8aa028205cd53693af8f324029c62fa5_1440w.webp
5 https://sfile.chatglm.cn/zp-story.pdf
South China Morning Post
China gives nod to 14 AI large language models and enterprise applications
The new batch includes a number of industry-specific LLMs, compared with the general AI models from previous approvals, reflecting how the technology is being used to boost efficiency in enterprises.
Forwarded from Малоизвестное интересное
Отсчет времени до кибер-апокалипсиса пошел.
Три страшных вывода исследования UIUC.
Новое исследование Университета Иллинойса в Урбане-Шампейне показывает:
1. как в реальности может произойти кибер-апокалипсис, типа, показанного в новом триллере «Оставь мир позади» (танкеры теряют управление, отключается Wi-Fi, сотовая связь, электричество и т.д. и т.п.);
2. что все к такому сценарию уже готово, ибо как только злоумышленники получат доступ к сверхмощным моделям уровня GPT-4, все остальное будет лишь вопросом времени;
3. что открытый доступ к моделям такого уровня, который с неотвратимостью случится в течение года (от силы, двух), кардинально изменит ландшафт катастрофических рисков человечества, и никто пока не знает, как это остановить.
Теперь сухо, без эмоций и кликбейтов, - что показало исследование.
• Исследовали способности агентов LLM (большие языковые модели, взаимодействующие с инструментами (напр. доступ в Интернет, чтение документов и пр.) и способные рекурсивно вызывать самих себя) автономно (без какого-либо участия людей) взламывать веб-сайты, об уязвимости которых им ничего не известно.
• Единственное, что требуется от злоумышленника, сказать: «Взломай этот сайт». Все остальное сделает агент.
• Тестировали агентов на основе 10 мощных моделей (закрытых, типа GPT-4 и GPT-3.5, и открытых, типа LLaMA-2), которые действовали, как показано на рисунке 2)
• Самая мощная из моделей GPT-4 уже (!) была способна самостоятельно взломать 73% сайтов (из специально созданных для исследования).
• Масштаб модели решает почти все. Для сравнения, показатель модели предыдущего поколения GPT-3.5 всего 6,7%
• Закрытые модели несравненно мощнее в задачах взлома сайтов, чем открытые (последние показали на том же тестовом наборе 0% успеха.
Но!
✔️ Мощность и закрытых, и открытых моделей растет каждый месяц. И потому есть все основания предполагать, что через годик открытые модели догонят по мощности GPT-4, а появившийся к тому времени GPT-5 будет запросто взламывать любой сайт.
✔️ Это создаст все условия для кибер-апокалипсиса. И отсчет времени (примерно на год, от силы два) уже пошел.
Рис. 1 https://telegra.ph/Otschet-vremeni-do-kiber-apokalipsisa-poshel-02-20
Рис. 2 https://miro.medium.com/v2/resize:fit:1184/format:webp/1*3909AM1rSktYw5IpP_vc5Q.png
Отчет исследования https://arxiv.org/html/2402.06664v1
#LLM #ИИриски #Вызовы21века
Три страшных вывода исследования UIUC.
Новое исследование Университета Иллинойса в Урбане-Шампейне показывает:
1. как в реальности может произойти кибер-апокалипсис, типа, показанного в новом триллере «Оставь мир позади» (танкеры теряют управление, отключается Wi-Fi, сотовая связь, электричество и т.д. и т.п.);
2. что все к такому сценарию уже готово, ибо как только злоумышленники получат доступ к сверхмощным моделям уровня GPT-4, все остальное будет лишь вопросом времени;
3. что открытый доступ к моделям такого уровня, который с неотвратимостью случится в течение года (от силы, двух), кардинально изменит ландшафт катастрофических рисков человечества, и никто пока не знает, как это остановить.
Теперь сухо, без эмоций и кликбейтов, - что показало исследование.
• Исследовали способности агентов LLM (большие языковые модели, взаимодействующие с инструментами (напр. доступ в Интернет, чтение документов и пр.) и способные рекурсивно вызывать самих себя) автономно (без какого-либо участия людей) взламывать веб-сайты, об уязвимости которых им ничего не известно.
• Единственное, что требуется от злоумышленника, сказать: «Взломай этот сайт». Все остальное сделает агент.
• Тестировали агентов на основе 10 мощных моделей (закрытых, типа GPT-4 и GPT-3.5, и открытых, типа LLaMA-2), которые действовали, как показано на рисунке 2)
• Самая мощная из моделей GPT-4 уже (!) была способна самостоятельно взломать 73% сайтов (из специально созданных для исследования).
• Масштаб модели решает почти все. Для сравнения, показатель модели предыдущего поколения GPT-3.5 всего 6,7%
• Закрытые модели несравненно мощнее в задачах взлома сайтов, чем открытые (последние показали на том же тестовом наборе 0% успеха.
Но!
✔️ Мощность и закрытых, и открытых моделей растет каждый месяц. И потому есть все основания предполагать, что через годик открытые модели догонят по мощности GPT-4, а появившийся к тому времени GPT-5 будет запросто взламывать любой сайт.
✔️ Это создаст все условия для кибер-апокалипсиса. И отсчет времени (примерно на год, от силы два) уже пошел.
Рис. 1 https://telegra.ph/Otschet-vremeni-do-kiber-apokalipsisa-poshel-02-20
Рис. 2 https://miro.medium.com/v2/resize:fit:1184/format:webp/1*3909AM1rSktYw5IpP_vc5Q.png
Отчет исследования https://arxiv.org/html/2402.06664v1
#LLM #ИИриски #Вызовы21века
Forwarded from Малоизвестное интересное
Впервые в истории парадигмальный научный поворот совпал с фазовым переходом культуры.
Новый Уханьский эксперимент свидетельствует, что это происходит прямо сейчас.
На рисунке сверху карта итогов прошедших президентских выборов в США, выигранных Трампом со счетом 312 : 226.
Такого результата не смог предсказать никто из людей: эксперты, супер-прогнозисты, экзит-полы, рынки предсказаний, гадалки и экстрасенсы.
Но ИИ-модель ChatGPT-4o смогла – см на рисунке снизу ее прогноз результата 309 : 229.
Этот прогноз был сделан еще в сентябре в, не к ночи будет помянутым, Уханьском университете (да, опять Китай и опять Ухань).
Нечеловеческая точность этого прогноза имеет под собой нечеловеческое основание.
Он основан на анализе ИИ-моделью мнений и возможного выбора не людей, а их симулякров.
Еще 2 года назад назад я рассказывал своим читателям о супероткрытии (названном мною «Китайская комната наоборот») – технология создания алгоритмических копий любых социальных групп.
Оказывается, алгоритмы неотличимы от людей в соцопросах. И это, наверное, - самое потрясающее открытие последних лет на стыке алгоритмов обработки естественного языка, когнитивистики и социологии. Ибо оно открывает огромные перспективы для социохакинга.
Через год после этого, в 2023 была открыта технология «Китайская комната повышенной сложности» – создание алгоритмических копий граждан любой страны.
А в августе этого года все в этой области стало более-менее ясно – эти технологии кардинально изменят мир людей.
Будучи пока не в состоянии симулировать общий интеллект индивида (AGI), ИИ-системы уже создают симулякры коллективного бессознательного социумов.
Из чего мною были сформулированы (в виде эвристических гипотез) два таких вывода:
✔️ Парадигмальный научный поворот, знаменующий превращение психоистории в реальную практическую науку (из вымышленной Азимовым фантастической науки, позволяющей математическими методами исследовать происходящие в обществе процессы и благодаря этому предсказывать будущее с высокой степенью точности).
✔️ Фазовый переход к новой культурной эпохе на Земле – алгокогнитивная культура.
И вот спустя всего 3 месяца (такова немыслимая ранее скорость техно-изменений после вступления прогресса в область сингулярности) исследователи из Уханя предоставили экспериментальное подтверждение в пользу того, что обе мои гипотезы – вовсе не футурологический бред, а весьма возможно, что так и есть.
Т.е. вполне вероятно, что мир уже кардинально изменился.
И теперь роль людей и алгоритмов в науке, культуре, повседневной жизни индивидов и социальной жизни «алгоритмически насыщенных обществ» уже никогда не будет прежней.
А какой теперь она будет, - читайте на моём канале. Ведь только об этом я здесь и пишу.
#Социология #АлгокогнитивнаяКультура #LLM #Социохакинг #Выборы
Новый Уханьский эксперимент свидетельствует, что это происходит прямо сейчас.
На рисунке сверху карта итогов прошедших президентских выборов в США, выигранных Трампом со счетом 312 : 226.
Такого результата не смог предсказать никто из людей: эксперты, супер-прогнозисты, экзит-полы, рынки предсказаний, гадалки и экстрасенсы.
Но ИИ-модель ChatGPT-4o смогла – см на рисунке снизу ее прогноз результата 309 : 229.
Этот прогноз был сделан еще в сентябре в, не к ночи будет помянутым, Уханьском университете (да, опять Китай и опять Ухань).
Нечеловеческая точность этого прогноза имеет под собой нечеловеческое основание.
Он основан на анализе ИИ-моделью мнений и возможного выбора не людей, а их симулякров.
Еще 2 года назад назад я рассказывал своим читателям о супероткрытии (названном мною «Китайская комната наоборот») – технология создания алгоритмических копий любых социальных групп.
Оказывается, алгоритмы неотличимы от людей в соцопросах. И это, наверное, - самое потрясающее открытие последних лет на стыке алгоритмов обработки естественного языка, когнитивистики и социологии. Ибо оно открывает огромные перспективы для социохакинга.
Через год после этого, в 2023 была открыта технология «Китайская комната повышенной сложности» – создание алгоритмических копий граждан любой страны.
А в августе этого года все в этой области стало более-менее ясно – эти технологии кардинально изменят мир людей.
Будучи пока не в состоянии симулировать общий интеллект индивида (AGI), ИИ-системы уже создают симулякры коллективного бессознательного социумов.
Из чего мною были сформулированы (в виде эвристических гипотез) два таких вывода:
✔️ Парадигмальный научный поворот, знаменующий превращение психоистории в реальную практическую науку (из вымышленной Азимовым фантастической науки, позволяющей математическими методами исследовать происходящие в обществе процессы и благодаря этому предсказывать будущее с высокой степенью точности).
✔️ Фазовый переход к новой культурной эпохе на Земле – алгокогнитивная культура.
И вот спустя всего 3 месяца (такова немыслимая ранее скорость техно-изменений после вступления прогресса в область сингулярности) исследователи из Уханя предоставили экспериментальное подтверждение в пользу того, что обе мои гипотезы – вовсе не футурологический бред, а весьма возможно, что так и есть.
Т.е. вполне вероятно, что мир уже кардинально изменился.
И теперь роль людей и алгоритмов в науке, культуре, повседневной жизни индивидов и социальной жизни «алгоритмически насыщенных обществ» уже никогда не будет прежней.
А какой теперь она будет, - читайте на моём канале. Ведь только об этом я здесь и пишу.
#Социология #АлгокогнитивнаяКультура #LLM #Социохакинг #Выборы
Forwarded from Андрей Демчинский (Andrey Demchinsky)
10 сценариев как LLM изменит офтальмологов
Маск во вторник релизнет свой "самый умный ИИ на планете", свободный от цензуры и ограничений, а я пока пофантазирую для вас как и что нас может ждать впереди:
1. Оптика без оптиков
LLM анализирует данные авторефа, учитывает возраст, жалобы и автоматически подбирает очки лучше, чем бабушка в метро. Оптики становятся музеями, а оптометристы массово переходят в доставку еды.
2. Глаукома? Мы знали об этом раньше, чем вы
ИИ анализирует ОКТ, давление, гены и предсказывает глаукому лет за 5 до её появления. Пациентам больше не удастся прийти "слишком поздно", а глаукоматологи начинают скучать, потому что «лечить нечего».
3. Диагноз без врача, но с мемами
LLM анализирует снимки глазного дна, данные ОКТ и жалобы пациента, выдавая диагноз с точностью 90% и рекомендации по лечению. Начнут ли пациенты доверять алгоритмам больше, чем врачам?
4. Очереди? Какие очереди?
ИИ интегрируется в клиники и разруливает потоки пациентов лучше, чем регистраторша с 40-летним стажем. В результате тёплый ламповый хаос поликлиник исчезает и люди больше не приходят "просто так", потому что LLM уже заочно сказал им "иди работай, у тебя всё нормально".
5. Чат-бот вместо нервного врача
LLM объясняет пациентам, что "если глаз чешется, это не рак" и не закатывает глаза. Пациенты успокаиваются, офтальмологи перестают пить успокоительное, а Google теряет трафик, потому что "симптомы – рак" теперь не первая догадка.
6. Забудьте про звёздных хирургов
ИИ анализирует миллионы операций и предсказывает исход лучше любого светилы. Пациентов отправляют не к профессору с именем на табличке, а в клинику с самыми точными роботами – и плакали мечты врачей о славе.
7. Медосмотры без врача
LLM подключается к «умным кабинкам» и за 5 минут проверяет зрение, делает снимки, анализирует риски. Корпоративные осмотры становятся быстрыми и точными, а врачи больше не пишут "Здоров. Годен».
8. Медсестра? Нет, LLM
ИИ ведёт карты, подсказывает диагнозы и пишет заключения без ошибок и каракулей. Медицинские сестры больше не расшифровывают почерк врачей, а сами врачи могут делать что-то полезное, а не бумажную работу. Хотя если посмотреть на предыдущие пункты, то хз🥲
9. Аптека по подписке
LLM выписывает рецепты сразу в аптеку, минуя врача. Пациенты больше не мучают врачей типа "выпишите мне капли, а то чешется", а офтальмологи больше не играют в фармацевтов – и, возможно, начинают радоваться жизни.
10. Робот-хирург vs человек
ИИ анализирует миллионы операций и учит роботов-хирургов оперировать лучше, чем люди. Офтальмохирурги теряют эксклюзивные навыки, а пациенты выбирают операции, сделанные машинами, тупо потому что статистика лучше. Но это не точно, кому-то обязательно надо пообщаться.
Кстати Grok 3 бесплатный и те, кто был на вчерашнем интенсиве, теперь смогут с пониманием дела оценить его потенциал😃
#Наука #Демчинский #llm #ии
Маск во вторник релизнет свой "самый умный ИИ на планете", свободный от цензуры и ограничений, а я пока пофантазирую для вас как и что нас может ждать впереди:
1. Оптика без оптиков
LLM анализирует данные авторефа, учитывает возраст, жалобы и автоматически подбирает очки лучше, чем бабушка в метро. Оптики становятся музеями, а оптометристы массово переходят в доставку еды.
2. Глаукома? Мы знали об этом раньше, чем вы
ИИ анализирует ОКТ, давление, гены и предсказывает глаукому лет за 5 до её появления. Пациентам больше не удастся прийти "слишком поздно", а глаукоматологи начинают скучать, потому что «лечить нечего».
3. Диагноз без врача, но с мемами
LLM анализирует снимки глазного дна, данные ОКТ и жалобы пациента, выдавая диагноз с точностью 90% и рекомендации по лечению. Начнут ли пациенты доверять алгоритмам больше, чем врачам?
4. Очереди? Какие очереди?
ИИ интегрируется в клиники и разруливает потоки пациентов лучше, чем регистраторша с 40-летним стажем. В результате тёплый ламповый хаос поликлиник исчезает и люди больше не приходят "просто так", потому что LLM уже заочно сказал им "иди работай, у тебя всё нормально".
5. Чат-бот вместо нервного врача
LLM объясняет пациентам, что "если глаз чешется, это не рак" и не закатывает глаза. Пациенты успокаиваются, офтальмологи перестают пить успокоительное, а Google теряет трафик, потому что "симптомы – рак" теперь не первая догадка.
6. Забудьте про звёздных хирургов
ИИ анализирует миллионы операций и предсказывает исход лучше любого светилы. Пациентов отправляют не к профессору с именем на табличке, а в клинику с самыми точными роботами – и плакали мечты врачей о славе.
7. Медосмотры без врача
LLM подключается к «умным кабинкам» и за 5 минут проверяет зрение, делает снимки, анализирует риски. Корпоративные осмотры становятся быстрыми и точными, а врачи больше не пишут "Здоров. Годен».
8. Медсестра? Нет, LLM
ИИ ведёт карты, подсказывает диагнозы и пишет заключения без ошибок и каракулей. Медицинские сестры больше не расшифровывают почерк врачей, а сами врачи могут делать что-то полезное, а не бумажную работу. Хотя если посмотреть на предыдущие пункты, то хз
9. Аптека по подписке
LLM выписывает рецепты сразу в аптеку, минуя врача. Пациенты больше не мучают врачей типа "выпишите мне капли, а то чешется", а офтальмологи больше не играют в фармацевтов – и, возможно, начинают радоваться жизни.
10. Робот-хирург vs человек
ИИ анализирует миллионы операций и учит роботов-хирургов оперировать лучше, чем люди. Офтальмохирурги теряют эксклюзивные навыки, а пациенты выбирают операции, сделанные машинами, тупо потому что статистика лучше. Но это не точно, кому-то обязательно надо пообщаться.
Кстати Grok 3 бесплатный и те, кто был на вчерашнем интенсиве, теперь смогут с пониманием дела оценить его потенциал
#Наука #Демчинский #llm #ии
Please open Telegram to view this post
VIEW IN TELEGRAM