Неименованные параметры функций
С++ позволяет не указывать имена параметров функций, если они не используются в коде.
Это можно делать и в объявлении функции, и в ее определении.
Важный момент, что отсутствие имени параметра не говорит о том, что параметра нет и его не нужно передавать. Для вызова такой функции вы должны передать в нее аргумент соответствующего типа. Даже если он ничего не делает полезного.
Но вот вопрос возникает тогда. Если параметр ничего не делает, нахрена он тогда вообще нужен?
На самом деле много кейсов, где неименованный параметр может пригодится.
💥 Допустим, у вас есть функция, которая используется в очень многих местах кода, может даже через какие-нибудь указатели на функцию. И в один момент времени часть функционала стала ненужной и один или несколько параметров стали ненужны. Править все вызовы этой функции было бы болью, особенно если туда вовлечены function поинтеры. Вместо этого вы можете сделать эти параметры безымянными, чтобы явно в коде показать, что этот параметр не используется. Его и нельзя даже будет использовать.
💥 Заглушки. Зачастую для тестирования функциональности применяют сущности-болванки, которые внешне ведут себя, как нормальные ребята, но на самом деле они лодыри и ничего путного не делают. Это нужно для мокания соседних модулей, чтобы протестировать только функциональность выбранного набора модулей. Такие заглушки должны выглядеть подобающе, то есть полностью повторять апи замоканой сущности, но могут не делать никакой полезной работы. Поэтому можно в этом апи сделать безымянные параметры, чтобы еще раз подчеркнуть, что они не используются.
💥 Иногда существующие сущности в коде требуют коллбэки определенного вида. И вам в своем коллбэке возможно не нужно использовать весь набор параметров. Но для соблюдения апи вы должны их указать в сигнатуре своего обратного вызова. В этом случае можно сделать эти параметры безымянными.
💥 Иногда в иерархии полиморфных классов в конкретном наследнике вам не нужны все параметры виртуальной функции. Но для поддержания корректности переопределения виртуального интерфейса вы должны включить все параметры в сигнатуру метода. Опять же, неиспользуемые параметры можно пометить безымянными.
💥 Знаменитая перегрузка постфиксного оператора инкремента/декремента. Есть 2 вида этих операторов: префикстный и постфиксный. Проблема в том, что это все еще вызов функции operator++. Как различить реализации этих функций? Правильно, нужна перегрузка. Вот здесь и приходит на помощь безымянный параметр: в коде он не нужен, но влияет на выбор конкретной перегрузки. Выглядит это так:
В целом, эта фича нужна либо для соблюдения существующего апи, либо для того, чтобы при вызове функции гарантировано вызвалась правильная перегрузка.
Stay useful. Stay cool.
📣 Уютное сообщество С++ разработчиков #cppcore #design
С++ позволяет не указывать имена параметров функций, если они не используются в коде.
void foo(int /no name here/);
void foo(int /no name here/)
{
std::cout << "foo" << std::endl;
}
foo(5);
Это можно делать и в объявлении функции, и в ее определении.
Важный момент, что отсутствие имени параметра не говорит о том, что параметра нет и его не нужно передавать. Для вызова такой функции вы должны передать в нее аргумент соответствующего типа. Даже если он ничего не делает полезного.
Но вот вопрос возникает тогда. Если параметр ничего не делает, нахрена он тогда вообще нужен?
На самом деле много кейсов, где неименованный параметр может пригодится.
💥 Допустим, у вас есть функция, которая используется в очень многих местах кода, может даже через какие-нибудь указатели на функцию. И в один момент времени часть функционала стала ненужной и один или несколько параметров стали ненужны. Править все вызовы этой функции было бы болью, особенно если туда вовлечены function поинтеры. Вместо этого вы можете сделать эти параметры безымянными, чтобы явно в коде показать, что этот параметр не используется. Его и нельзя даже будет использовать.
💥 Заглушки. Зачастую для тестирования функциональности применяют сущности-болванки, которые внешне ведут себя, как нормальные ребята, но на самом деле они лодыри и ничего путного не делают. Это нужно для мокания соседних модулей, чтобы протестировать только функциональность выбранного набора модулей. Такие заглушки должны выглядеть подобающе, то есть полностью повторять апи замоканой сущности, но могут не делать никакой полезной работы. Поэтому можно в этом апи сделать безымянные параметры, чтобы еще раз подчеркнуть, что они не используются.
💥 Иногда существующие сущности в коде требуют коллбэки определенного вида. И вам в своем коллбэке возможно не нужно использовать весь набор параметров. Но для соблюдения апи вы должны их указать в сигнатуре своего обратного вызова. В этом случае можно сделать эти параметры безымянными.
💥 Иногда в иерархии полиморфных классов в конкретном наследнике вам не нужны все параметры виртуальной функции. Но для поддержания корректности переопределения виртуального интерфейса вы должны включить все параметры в сигнатуру метода. Опять же, неиспользуемые параметры можно пометить безымянными.
💥 Знаменитая перегрузка постфиксного оператора инкремента/декремента. Есть 2 вида этих операторов: префикстный и постфиксный. Проблема в том, что это все еще вызов функции operator++. Как различить реализации этих функций? Правильно, нужна перегрузка. Вот здесь и приходит на помощь безымянный параметр: в коде он не нужен, но влияет на выбор конкретной перегрузки. Выглядит это так:
struct Digit
{
Digit(int digit=0) : m_digit{digit} {}
Digit& operator++(); // prefix has no parameter
Digit operator++(int); // postfix has an int parameter
private:
int m_digit{};
};
В целом, эта фича нужна либо для соблюдения существующего апи, либо для того, чтобы при вызове функции гарантировано вызвалась правильная перегрузка.
Stay useful. Stay cool.
Please open Telegram to view this post
VIEW IN TELEGRAM
Потокобезопасный интерфейс
#новичкам
Не для всех очевидная новость: не всегда можно превратить класс из небезопасного в потокобезопасный, просто по уши обложившись лок гардами. Да, вызов конкретного метода будет безопасен. Но это не значит, что классом безопасно пользоваться.
Возьмем максимально простую реализацию самой простой очереди:
Она конечно потокоНЕбезопасная. То есть ей можно адекватно пользоваться только в рамках одного потока.
Как может выглядеть код простого консьюмера этой очереди?
И вот мы захотели разделить обязанности производителя чисел и их потребителя между разными потокам. Значит, нам надо как-то защищать очередь от многопоточных неприятностей.
Бабахаем везде лок гард на один мьютекс и дело в шляпе!
Все доступы к очереди защищены. Но спасло ли реально это нас?
Вернемся к коду консюмера:
А вдруг у нас появится еще один консюмер? Тогда в первом из них мы можем войти условие, а в это время второй достанет последний элемент. Получается, что мы получим доступ к неинициализированной памяти в методе front.
То есть по факту в многопоточном приложении полученный стейт сущности сразу же утрачивает свою актуальность.
Что делать? Не только сами методы класса должны быть потокобезопасными. Но еще и комбинации использования этих методов тоже должны обладать таким свойством. И с данным интерфейсом это сделать просто невозможно.
Если стейт утрачивает актуальность, то мы вообще не должны давать возможность приложению получать стейт очереди. Нам нужны только команды управления. То есть push и pop.
Внутри метода
Теперь консюмер выглядит так:
Можно конечно было использовать кондвары и прочее. Но я хотел сфокусироваться именно на интерфейсе. Теперь реализация просто не позволяет получать пользователю потенциально неактульные данные.
Stay safe. Stay cool.
#concurrency #design #goodpractice
#новичкам
Не для всех очевидная новость: не всегда можно превратить класс из небезопасного в потокобезопасный, просто по уши обложившись лок гардами. Да, вызов конкретного метода будет безопасен. Но это не значит, что классом безопасно пользоваться.
Возьмем максимально простую реализацию самой простой очереди:
struct Queue {
void push(int value) {
storage.push_back(value);
}
void pop() {
storage.pop_front();
}
bool empty() {
return storage.empty();
}
int& front() {
return storage.front();
}
private:
std::deque<int> storage;
};
Она конечно потокоНЕбезопасная. То есть ей можно адекватно пользоваться только в рамках одного потока.
Как может выглядеть код простого консьюмера этой очереди?
while(condition)
if (!queue.empty()) {
auto & elem = queue.front();
process_elem(elem);
queue.pop();
}
И вот мы захотели разделить обязанности производителя чисел и их потребителя между разными потокам. Значит, нам надо как-то защищать очередь от многопоточных неприятностей.
Бабахаем везде лок гард на один мьютекс и дело в шляпе!
struct Queue {
void push(int value) {
std::lock_guard lg{m};
storage.push_back(value);
}
void pop() {
std::lock_guard lg{m};
storage.pop_front();
}
bool empty() {
std::lock_guard lg{m};
return storage.empty();
}
int& front() {
std::lock_guard lg{m};
return storage.front();
}
private:
std::deque<int> storage;
std::mutex m;
};
Все доступы к очереди защищены. Но спасло ли реально это нас?
Вернемся к коду консюмера:
while(true)
if (!queue.empty()) {
auto & elem = queue.front();
process_elem(elem);
queue.pop();
}
А вдруг у нас появится еще один консюмер? Тогда в первом из них мы можем войти условие, а в это время второй достанет последний элемент. Получается, что мы получим доступ к неинициализированной памяти в методе front.
То есть по факту в многопоточном приложении полученный стейт сущности сразу же утрачивает свою актуальность.
Что делать? Не только сами методы класса должны быть потокобезопасными. Но еще и комбинации использования этих методов тоже должны обладать таким свойством. И с данным интерфейсом это сделать просто невозможно.
Если стейт утрачивает актуальность, то мы вообще не должны давать возможность приложению получать стейт очереди. Нам нужны только команды управления. То есть push и pop.
struct ThreadSafeQueue {
void push(int value) {
std::lock_guard lg{m};
storage.push_back(value);
}
std::optional<int> pop() {
std::lock_guard lg{m};
if (!storage.empty()) {
int elem = storage.front();
storage.pop_front();
return elem;
}
return nullopt;
}
private:
std::deque<int> storage;
std::mutex m;
};
Внутри метода
pop
мы можем использовать проверять и получать стейт очереди, так как мы оградились локом. Возвращаем из него std::optional
, который будет хранить фронтальный элемент, если очередь была непуста. В обратном случае он будет пуст.Теперь консюмер выглядит так:
while(true) {
auto elem = queue.pop();
if (elem)
process_elem(elem.value());
}
Можно конечно было использовать кондвары и прочее. Но я хотел сфокусироваться именно на интерфейсе. Теперь реализация просто не позволяет получать пользователю потенциально неактульные данные.
Stay safe. Stay cool.
#concurrency #design #goodpractice
❤1