Напоминаем, что Научный совет по неорганической химии РАН и Научно-образовательный центр ИОНХ РАН приглашают аспирантов и молодых ученых принять участие в работе Первой ежегодной зимней школы по физическим методам исследования неорганических веществ и материалов, которая пройдет с 17 по 21 февраля 2025 г. в Институте общей и неорганической химии им. Н. С. Курнакова РАН в очном формате.
У вас появится уникальная возможность расширить свои знания в передовых методах рентгеноструктурного и рентгенодифракционного анализа, сканирующей электронной микроскопии, молекулярной спектроскопии.
Основное внимание будет уделено современным достижениям в области исследования характеристик неорганических веществ и перспективных материалов применительно к их использованию в различных отраслях – от микроэлектроники до биомедицины.
Число участников ограничено. Стоимость участия в мероприятии – 20 000 рублей с человека.
По завершении школы всем участникам с высшим образованием и средним профессиональным образованием выдаётся удостоверение о повышении квалификации установленного образца.
Для участия необходимо подать заявку в свободной форме в Образовательный центр ИОНХ РАН по e-mail: [email protected]
#ионх #обучение
У вас появится уникальная возможность расширить свои знания в передовых методах рентгеноструктурного и рентгенодифракционного анализа, сканирующей электронной микроскопии, молекулярной спектроскопии.
Основное внимание будет уделено современным достижениям в области исследования характеристик неорганических веществ и перспективных материалов применительно к их использованию в различных отраслях – от микроэлектроники до биомедицины.
Число участников ограничено. Стоимость участия в мероприятии – 20 000 рублей с человека.
По завершении школы всем участникам с высшим образованием и средним профессиональным образованием выдаётся удостоверение о повышении квалификации установленного образца.
Для участия необходимо подать заявку в свободной форме в Образовательный центр ИОНХ РАН по e-mail: [email protected]
#ионх #обучение
Мономолекулярные магниты на основе катионных и анионных комплексных фрагментов с ионами лантанидов и основанием Шиффа
Международный коллектив ученых из Крымского федерального университета им. В.И. Вернадского, Университета Палацкого (Чехия, Оломоуц), Института общей и неорганической химии им. Н.С. Курнакова РАН, Венского технического университета (Австрия) синтезировали и изучили изоструктурные катион-анионные комплексы гадолиния(III), тербия(III) и диспрозия(III) с тетрадентатным основанием Шиффа саленового типа. Выявлено, что полученные координационные соединения, содержащие два независимых магнитных металлоцентра, проявляют свойства мономолекулярных магнитов в ненулевом поле. Для комплекса диспрозия(III) обнаружена медленная магнитная релаксация намагниченности в нулевом поле с энергетическим барьером равным 256 K. На основании теоретических расчетов для соединений тербия(III) и диспрозия(III) показано, что катионный фрагмент является источником наблюдаемого магнитного эффекта.
Результаты работы, выполненной при поддержке Минобрнауки России, опубликованы в журнале Dalton Transactions.
Alexey Gusev, Ivan Nemec, Radovan Herchel, Yuriy Baluda, Konstantin Babeshkin, Nikolay Efimov, Mikhail Kiskin, Wolfgang Linert. Lanthanide(III) SMMs with cationic and anionic complex fragments formed by a Schiff base: structure, luminescence, magnetic properties and ab initio calculations. Dalton Transactions. 2024. Vol. 53. P. 11531.
https://doi.org/10.1039/d4dt01284d
#российскаянаука #ионх
Международный коллектив ученых из Крымского федерального университета им. В.И. Вернадского, Университета Палацкого (Чехия, Оломоуц), Института общей и неорганической химии им. Н.С. Курнакова РАН, Венского технического университета (Австрия) синтезировали и изучили изоструктурные катион-анионные комплексы гадолиния(III), тербия(III) и диспрозия(III) с тетрадентатным основанием Шиффа саленового типа. Выявлено, что полученные координационные соединения, содержащие два независимых магнитных металлоцентра, проявляют свойства мономолекулярных магнитов в ненулевом поле. Для комплекса диспрозия(III) обнаружена медленная магнитная релаксация намагниченности в нулевом поле с энергетическим барьером равным 256 K. На основании теоретических расчетов для соединений тербия(III) и диспрозия(III) показано, что катионный фрагмент является источником наблюдаемого магнитного эффекта.
Результаты работы, выполненной при поддержке Минобрнауки России, опубликованы в журнале Dalton Transactions.
Alexey Gusev, Ivan Nemec, Radovan Herchel, Yuriy Baluda, Konstantin Babeshkin, Nikolay Efimov, Mikhail Kiskin, Wolfgang Linert. Lanthanide(III) SMMs with cationic and anionic complex fragments formed by a Schiff base: structure, luminescence, magnetic properties and ab initio calculations. Dalton Transactions. 2024. Vol. 53. P. 11531.
https://doi.org/10.1039/d4dt01284d
#российскаянаука #ионх
pubs.rsc.org
Lanthanide(III) SMMs with cationic and anionic complex fragments formed by a Schiff base: structure, luminescence, magnetic properties…
The syntheses, structures, luminescence and magnetic properties of a new series of Ln(iii) complexes of the formula [Ln(L)(H2O)2(DMF)2][Ln(L)2] (in which H2L is N,N′-ethylaminebis[1-phenyl-3-methyl-4-formylimino-2-pyrazoline-5-one]; Ln(iii) – Gd (1), Tb (2)…
На сайте Научной электронной библиотеки Elibrary.ru опубликован очередной номер Журнала неорганической химии (том 69, № 6, 2024 г.)
Содержание выпуска со ссылками на статьи:
Синтез и свойства неорганических соединений
Синтез конъюгата клозо-додекаборатного аниона с этилглицинатом и изучение его биораспределения на модели меланомы B16F10.
Рябчикова М.Н., Нелюбин А.В., Смирнова А.В., Финогенова Ю.А., Скрибицкий В.А., Шпакова К.Е., Кубасов А.С., Жданов А.П., Липенгольц А.А., Григорьева Е.Ю., Жижин К.Ю., Кузнецов Н.Т.
https://elibrary.ru/item.asp?id=75093462
Синтез новых борсодержащих лигандов на основе процессов нуклеофильного присоединения 1,10-фенантролин-5-амина к нитрилиевым производным [2-B10H9NCR]“ (R = Me, Et, n Pr).
Нелюбин А.В., Селиванов Н.А., Быков А.Ю., Кубасов А.С., Клюкин И.Н., Жданов А.П., Жижин К.Ю., Кузнецов Н.Т.
https://elibrary.ru/item.asp?id=75093463
Изучение обратимой перегруппировки хоторна между изомерными формами октадекагидроэйкозаборатного аниона методом динамической 11В ЯМР-спектроскопии.
Донцова О.С., Матвеев Е.Ю., Ештукова-Щеглова Е.А., Ничуговский А.И., Голубев А.В., Привалов В.И., Авдеева В.В., Малинина Е.А., Жижин К.Ю., Кузнецов Н.Т.
https://elibrary.ru/item.asp?id=75093464
Координационные соединения
Синтез и строение галогенидных комплексов серебра [PH3PCH=CH2]N[Ag2Br3]N, [PH3PCH=CH2]N[Ag5Br6]N и [PH3PCH2CH=CHCH2PPH3][Ag2I4].
Шевченко Д.П., Жижина А.И., Ефремов А.Н., Шарутин В.В., Шарутина О.К.
https://elibrary.ru/item.asp?id=75093465
Химическое генерирование и реакционная способность высокоокисленных оксоформ ц-карбидодимерного водорастворимого сульфофталоцианината рутения(IV).
Зайцева С.В., Зданович С.А., Сухарев В.С., Койфман О.И.
https://elibrary.ru/item.asp?id=75093466
Кристаллическая структура твердых продуктов взаимодействия £-капролактама с кремнефтороводородной кислотой и гексафторосиликатом меди(II).
Черкасова Т.Г., Первухина Н.В., Куратьева Н.В., Панасина Т.В., Гиниятуллина Ю.Р., Татаринова Э.С., Черкасова Е.В.
https://elibrary.ru/item.asp?id=75093467
Теоретическая неорганическая химия
Квантово-химическое моделирование отщепления молекулярного водорода от диаммиаката борогидрида магния.
Зюбин А.С., Зюбина Т.С., Кравченко О.В., Соловьев М.В., Васильев В.П., Зайцев А.А., Шиховцев А.В., Добровольский Ю.А.
https://elibrary.ru/item.asp?id=75093468
Физические методы исследования
Теплоемкость и термическое расширение LaMgAl11O19.
Гагарин П.Г., Гуськов А.В., Гуськов В.Н., Никифорова Г.Е., Гавричев К.С.
https://elibrary.ru/item.asp?id=75093469
#российскаянаука #ионх
Содержание выпуска со ссылками на статьи:
Синтез и свойства неорганических соединений
Синтез конъюгата клозо-додекаборатного аниона с этилглицинатом и изучение его биораспределения на модели меланомы B16F10.
Рябчикова М.Н., Нелюбин А.В., Смирнова А.В., Финогенова Ю.А., Скрибицкий В.А., Шпакова К.Е., Кубасов А.С., Жданов А.П., Липенгольц А.А., Григорьева Е.Ю., Жижин К.Ю., Кузнецов Н.Т.
https://elibrary.ru/item.asp?id=75093462
Синтез новых борсодержащих лигандов на основе процессов нуклеофильного присоединения 1,10-фенантролин-5-амина к нитрилиевым производным [2-B10H9NCR]“ (R = Me, Et, n Pr).
Нелюбин А.В., Селиванов Н.А., Быков А.Ю., Кубасов А.С., Клюкин И.Н., Жданов А.П., Жижин К.Ю., Кузнецов Н.Т.
https://elibrary.ru/item.asp?id=75093463
Изучение обратимой перегруппировки хоторна между изомерными формами октадекагидроэйкозаборатного аниона методом динамической 11В ЯМР-спектроскопии.
Донцова О.С., Матвеев Е.Ю., Ештукова-Щеглова Е.А., Ничуговский А.И., Голубев А.В., Привалов В.И., Авдеева В.В., Малинина Е.А., Жижин К.Ю., Кузнецов Н.Т.
https://elibrary.ru/item.asp?id=75093464
Координационные соединения
Синтез и строение галогенидных комплексов серебра [PH3PCH=CH2]N[Ag2Br3]N, [PH3PCH=CH2]N[Ag5Br6]N и [PH3PCH2CH=CHCH2PPH3][Ag2I4].
Шевченко Д.П., Жижина А.И., Ефремов А.Н., Шарутин В.В., Шарутина О.К.
https://elibrary.ru/item.asp?id=75093465
Химическое генерирование и реакционная способность высокоокисленных оксоформ ц-карбидодимерного водорастворимого сульфофталоцианината рутения(IV).
Зайцева С.В., Зданович С.А., Сухарев В.С., Койфман О.И.
https://elibrary.ru/item.asp?id=75093466
Кристаллическая структура твердых продуктов взаимодействия £-капролактама с кремнефтороводородной кислотой и гексафторосиликатом меди(II).
Черкасова Т.Г., Первухина Н.В., Куратьева Н.В., Панасина Т.В., Гиниятуллина Ю.Р., Татаринова Э.С., Черкасова Е.В.
https://elibrary.ru/item.asp?id=75093467
Теоретическая неорганическая химия
Квантово-химическое моделирование отщепления молекулярного водорода от диаммиаката борогидрида магния.
Зюбин А.С., Зюбина Т.С., Кравченко О.В., Соловьев М.В., Васильев В.П., Зайцев А.А., Шиховцев А.В., Добровольский Ю.А.
https://elibrary.ru/item.asp?id=75093468
Физические методы исследования
Теплоемкость и термическое расширение LaMgAl11O19.
Гагарин П.Г., Гуськов А.В., Гуськов В.Н., Никифорова Г.Е., Гавричев К.С.
https://elibrary.ru/item.asp?id=75093469
#российскаянаука #ионх
Продолжение
Физико-химический анализ неорганических систем
Моделирование фазового комплекса стабильного пентатопа LiF-K2CrO4-Rb2CrO4-KF-RbF четырехкомпонентной взаимной системы Li+,K+,Rb+||F-,CrO2-4.
Бурчаков А.В., Бурчакова Е.О.
https://elibrary.ru/item.asp?id=75093470
Политерма растворимости системы Mg(ClO3)2-[21% ClCH2CH2PO(OH)2 • NH3 + 11% ClCH2CH2PO(OH)2 • 2NH3 + 12% NH4H2PO4 + 56% Н2О]-Н2О.
Якубов Ш.Ш., Обиджонов Д.О., Адилова М.Ш., Кучаров Б.Х., Закиров Б.С.
https://elibrary.ru/item.asp?id=75093471
Физикохимия растворов
Определение условий селективной сорбции серебра(1) на тиокарбамоилированном полиэтилене.
Мельник Е.А., Петрова Ю.С., Неудачина Л.К., Пестов А.В., Осипова В.А.
https://elibrary.ru/item.asp?id=75093472
О фосфинсодержащих комплексах золота(1) в растворе в связи с их биологическим применением.
Миронов И.В., Харламова В.Ю., Кальный Д.Б.
https://elibrary.ru/item.asp?id=75093473
Неорганические материалы и наноматериалы
Металл-органическая каркасная структура на основе никеля, триптофана и бипиридилэтилена, консолидированная на трековой мембране.
Пономарева О.Ю., Дрожжин Н.А., Виноградов И.И., Вершинина Т.Н., Алтынов В.А., Зуба И., Нечаев А.Н., Павлюкойч А.
https://elibrary.ru/item.asp?id=75093474
Фотоактивные слои на основе наностержней ZnO, полученных гидротермальным синтезом, для сенсибилизированных красителями солнечных элементов.
Аверочкин Е.П., Степарук А.С., Текшина Е.В., Крупанова Д.А., Емец В.В., Волкова Л.С., Рязанов Р.М., Лебедев Е.А., Козюхин С.А.
https://elibrary.ru/item.asp?id=75093475
Структура и фотокаталитическая активность композитов из наночастиц полупроводников в полиметилметакрилате.
Максимов С.Е., Янушкевич К.О., Тишкевич Д.И., Борисенко В.Е.
https://elibrary.ru/item.asp?id=75093476
Синтез, структура и оптические свойства полупроводниковых перовскитных наночастиц CsBX3 (B = Pb, Mn; X = Br, Cl).
Гущина В.А., Сон А.Г., Егорова А.А., Архипенко А.А., Теплоногова М.А., Ефимов Н.Н., Козюхин С.А.
https://www.elibrary.ru/item.asp?id=75093477
#российскаянаука #ионх
Физико-химический анализ неорганических систем
Моделирование фазового комплекса стабильного пентатопа LiF-K2CrO4-Rb2CrO4-KF-RbF четырехкомпонентной взаимной системы Li+,K+,Rb+||F-,CrO2-4.
Бурчаков А.В., Бурчакова Е.О.
https://elibrary.ru/item.asp?id=75093470
Политерма растворимости системы Mg(ClO3)2-[21% ClCH2CH2PO(OH)2 • NH3 + 11% ClCH2CH2PO(OH)2 • 2NH3 + 12% NH4H2PO4 + 56% Н2О]-Н2О.
Якубов Ш.Ш., Обиджонов Д.О., Адилова М.Ш., Кучаров Б.Х., Закиров Б.С.
https://elibrary.ru/item.asp?id=75093471
Физикохимия растворов
Определение условий селективной сорбции серебра(1) на тиокарбамоилированном полиэтилене.
Мельник Е.А., Петрова Ю.С., Неудачина Л.К., Пестов А.В., Осипова В.А.
https://elibrary.ru/item.asp?id=75093472
О фосфинсодержащих комплексах золота(1) в растворе в связи с их биологическим применением.
Миронов И.В., Харламова В.Ю., Кальный Д.Б.
https://elibrary.ru/item.asp?id=75093473
Неорганические материалы и наноматериалы
Металл-органическая каркасная структура на основе никеля, триптофана и бипиридилэтилена, консолидированная на трековой мембране.
Пономарева О.Ю., Дрожжин Н.А., Виноградов И.И., Вершинина Т.Н., Алтынов В.А., Зуба И., Нечаев А.Н., Павлюкойч А.
https://elibrary.ru/item.asp?id=75093474
Фотоактивные слои на основе наностержней ZnO, полученных гидротермальным синтезом, для сенсибилизированных красителями солнечных элементов.
Аверочкин Е.П., Степарук А.С., Текшина Е.В., Крупанова Д.А., Емец В.В., Волкова Л.С., Рязанов Р.М., Лебедев Е.А., Козюхин С.А.
https://elibrary.ru/item.asp?id=75093475
Структура и фотокаталитическая активность композитов из наночастиц полупроводников в полиметилметакрилате.
Максимов С.Е., Янушкевич К.О., Тишкевич Д.И., Борисенко В.Е.
https://elibrary.ru/item.asp?id=75093476
Синтез, структура и оптические свойства полупроводниковых перовскитных наночастиц CsBX3 (B = Pb, Mn; X = Br, Cl).
Гущина В.А., Сон А.Г., Егорова А.А., Архипенко А.А., Теплоногова М.А., Ефимов Н.Н., Козюхин С.А.
https://www.elibrary.ru/item.asp?id=75093477
#российскаянаука #ионх
Eu/Tb люминесцентный термометр с исключительно высокой и стабильной чувствительностью в диапазоне 180 до 320 K
Ученые из Московского государственного университета им. М.В. Ломоносова, Физического института им. П.Н. Лебедева РАН, Национального исследовательского университета «Высшая школа экономики», Института общей и неорганической химии им. Н.С. Курнакова РАН решили проблему реализации точных измерений температуры с помощью термометров на основе редкоземельных элементов, которые, как правило, характеризуются пониженной температурной чувствительностью и ограниченным рабочим диапазоном. В рамках исследования были синтезированы новые люминесцентные координационные соединения европия(III), гадолиния(III) и тербия(III) с фурансодержащим аналогом трифторацетона и показано, что смешанный металлокомплекс (Tb0.94Eu0.06) демонстрирует широкий и стабильный диапазон максимальной температурной чувствительности 3% × K-1 в области от 180 до 320 K.
Результаты работы, опубликованные в журнале Sensors and Actuators: A. Physical, способствуют расширению теоретических и практических знаний в области синтеза и применения смешанных координационных соединений лантанидов, а также открывают новые возможности для разработки высокоэффективных лантанидных люминесцентных термометров с предсказуемыми характеристиками для использования в оптоэлектронных и микрофлюидных приложениях, криобиологии, для микроскопического обнаружения термогенеза в живых клетках, тепловизионной диагностики микроэлектронных компонентов и контактов интегральных схем.
Anna A. Ivanova, Trofim A. Polikovskiy, Victoria E. Gontcharenko, Vladislav M. Korshunov, Mikhail A. Kiskin, Ilya V. Taydakov, Yury A. Belousov. Precision across temperatures: Eu/Tb luminescent thermometer with exceptionally high and stable sensitivity from 180 to 320 K. Sensors & Actuators: A. Physical. 2024. Vol. 379. P. 115969
https://www.sciencedirect.com/science/article/pii/S0924424724009634
#российскаянаука #ионх
Ученые из Московского государственного университета им. М.В. Ломоносова, Физического института им. П.Н. Лебедева РАН, Национального исследовательского университета «Высшая школа экономики», Института общей и неорганической химии им. Н.С. Курнакова РАН решили проблему реализации точных измерений температуры с помощью термометров на основе редкоземельных элементов, которые, как правило, характеризуются пониженной температурной чувствительностью и ограниченным рабочим диапазоном. В рамках исследования были синтезированы новые люминесцентные координационные соединения европия(III), гадолиния(III) и тербия(III) с фурансодержащим аналогом трифторацетона и показано, что смешанный металлокомплекс (Tb0.94Eu0.06) демонстрирует широкий и стабильный диапазон максимальной температурной чувствительности 3% × K-1 в области от 180 до 320 K.
Результаты работы, опубликованные в журнале Sensors and Actuators: A. Physical, способствуют расширению теоретических и практических знаний в области синтеза и применения смешанных координационных соединений лантанидов, а также открывают новые возможности для разработки высокоэффективных лантанидных люминесцентных термометров с предсказуемыми характеристиками для использования в оптоэлектронных и микрофлюидных приложениях, криобиологии, для микроскопического обнаружения термогенеза в живых клетках, тепловизионной диагностики микроэлектронных компонентов и контактов интегральных схем.
Anna A. Ivanova, Trofim A. Polikovskiy, Victoria E. Gontcharenko, Vladislav M. Korshunov, Mikhail A. Kiskin, Ilya V. Taydakov, Yury A. Belousov. Precision across temperatures: Eu/Tb luminescent thermometer with exceptionally high and stable sensitivity from 180 to 320 K. Sensors & Actuators: A. Physical. 2024. Vol. 379. P. 115969
https://www.sciencedirect.com/science/article/pii/S0924424724009634
#российскаянаука #ионх
Подведены итоги Конкурса молодежных научных работ имени выдающихся ученых ИОНХ РАН.
В 2024 году конкурс проводился по трем номинациям. Поздравляем победителей!
1. Конкурс имени академика Н.М. Жаворонкова (за работы в области химической технологии и физико-химических основ процессов разделения и концентрирования):
- н.с., к.х.н. Лупачев Е.В.; н.с., к.х.н. Полковниченко А.В.; м.н.с. Кисель А.В. (ИОНХ РАН)
«Разделение промышленных смесей структурных и пространственных изомеров перфторированных циклоалканов»
2. Конкурс имени академика И.В. Тананаева (за работы в области химии редких элементов, керамических материалов и наноматериалов):
- н.с., к.х.н. Веселова В.О. (ИОНХ РАН)
«Методы получения высокодисперсного Bi4Ge3O12 для сцинтилляционных применений»
- н.с., к.х.н. Юрова П.А.; н.с., к.х.н. Воропаева Д.Ю.; ст. лаб.-иссл. Манин А.Д. (ИОНХ РАН)
«Ионообменные мембраны для альтернативной энергетики и электромембранных процессов»
3. Конкурс имени академика И.И. Черняева (за работы в области координационной химии и химии платиновых металлов):
- н.с., к.х.н. Ромашев Н.Ф., м.н.с. Бакаева И.В., ст. лаб. Комлягина В.И. (ИНХ СО РАН) «Координационные соединения платиновых металлов на основе редокс-активных аценафтениминов: перспективные противоопухолевые агенты»
- н.с., к.х.н. Шмелев М.А., м.н.с. Чистяков А.С. (ИОНХ РАН)
«Химическое конструирование фотоактивных смешанноанионных координационных соединений»
#ионх
В 2024 году конкурс проводился по трем номинациям. Поздравляем победителей!
1. Конкурс имени академика Н.М. Жаворонкова (за работы в области химической технологии и физико-химических основ процессов разделения и концентрирования):
- н.с., к.х.н. Лупачев Е.В.; н.с., к.х.н. Полковниченко А.В.; м.н.с. Кисель А.В. (ИОНХ РАН)
«Разделение промышленных смесей структурных и пространственных изомеров перфторированных циклоалканов»
2. Конкурс имени академика И.В. Тананаева (за работы в области химии редких элементов, керамических материалов и наноматериалов):
- н.с., к.х.н. Веселова В.О. (ИОНХ РАН)
«Методы получения высокодисперсного Bi4Ge3O12 для сцинтилляционных применений»
- н.с., к.х.н. Юрова П.А.; н.с., к.х.н. Воропаева Д.Ю.; ст. лаб.-иссл. Манин А.Д. (ИОНХ РАН)
«Ионообменные мембраны для альтернативной энергетики и электромембранных процессов»
3. Конкурс имени академика И.И. Черняева (за работы в области координационной химии и химии платиновых металлов):
- н.с., к.х.н. Ромашев Н.Ф., м.н.с. Бакаева И.В., ст. лаб. Комлягина В.И. (ИНХ СО РАН) «Координационные соединения платиновых металлов на основе редокс-активных аценафтениминов: перспективные противоопухолевые агенты»
- н.с., к.х.н. Шмелев М.А., м.н.с. Чистяков А.С. (ИОНХ РАН)
«Химическое конструирование фотоактивных смешанноанионных координационных соединений»
#ионх
Метод индукционного детектирования магнитной динамики, вызванной температурными изменениями
Ученые из Международного томографического центра СО РАН, Новосибирского государственного университета, Института ядерной физики им. Г.И. Будкера СО РАН, Института элементоорганических соединений им. А.Н. Несмеянова РАН и Института общей и неорганической химии им. Н.С. Курнакова РАН разработали метод индукционного детектирования магнитной динамики, вызванной температурными изменениями, который может быть эффективно применен для изучения молекулярных спиновых систем. Представлен общий дизайн и конструкция индукционного датчика. Для оценки эффективности метода были исследованы несколько координационных соединений VO2+, Co2+ и Dy3+ с использованием в качестве источника импульсного нагрева Новосибирского лазера на свободных электронах, генерирующего мощные импульсы излучения терагерцового диапазона. Зарегистрированная магнитная динамика качественно или количественно описана предложенной базовой теоретической моделью и сопоставлена с данными, полученными методом магнитометрии в переменном поле.
Результаты работы, выполненной при поддержке РНФ (проект № 22-13-00376), опубликованы в журнале The Journal of Chemical Physics.
Melnikov, A. R.; Ivanov, M. Y.; Samsonenko, A. A.; Getmanov, Y. V.; Nikovskiy, I. A.; Matiukhina, A. K.; Zorina-Tikhonova, E. N.; Voronina, J. K.; Goloveshkin, A. S.; Babeshkin, K. A.; Efimov, N. N.; Kiskin, M. A.; Eremenko, I. L.; Fedin, M. V.; Veber, S. L. // Inductive detection of temperature-induced magnetization dynamics of molecular spin systems // The Journal of Chemical Physics. 160 (2024) 22. https://doi.org/10.1063/5.0211936
#российскаянаука #ионх
Ученые из Международного томографического центра СО РАН, Новосибирского государственного университета, Института ядерной физики им. Г.И. Будкера СО РАН, Института элементоорганических соединений им. А.Н. Несмеянова РАН и Института общей и неорганической химии им. Н.С. Курнакова РАН разработали метод индукционного детектирования магнитной динамики, вызванной температурными изменениями, который может быть эффективно применен для изучения молекулярных спиновых систем. Представлен общий дизайн и конструкция индукционного датчика. Для оценки эффективности метода были исследованы несколько координационных соединений VO2+, Co2+ и Dy3+ с использованием в качестве источника импульсного нагрева Новосибирского лазера на свободных электронах, генерирующего мощные импульсы излучения терагерцового диапазона. Зарегистрированная магнитная динамика качественно или количественно описана предложенной базовой теоретической моделью и сопоставлена с данными, полученными методом магнитометрии в переменном поле.
Результаты работы, выполненной при поддержке РНФ (проект № 22-13-00376), опубликованы в журнале The Journal of Chemical Physics.
Melnikov, A. R.; Ivanov, M. Y.; Samsonenko, A. A.; Getmanov, Y. V.; Nikovskiy, I. A.; Matiukhina, A. K.; Zorina-Tikhonova, E. N.; Voronina, J. K.; Goloveshkin, A. S.; Babeshkin, K. A.; Efimov, N. N.; Kiskin, M. A.; Eremenko, I. L.; Fedin, M. V.; Veber, S. L. // Inductive detection of temperature-induced magnetization dynamics of molecular spin systems // The Journal of Chemical Physics. 160 (2024) 22. https://doi.org/10.1063/5.0211936
#российскаянаука #ионх
AIP Publishing
Inductive detection of temperature-induced magnetization dynamics of molecular spin systems
The development and technological applications of molecular spin systems require versatile experimental techniques to characterize and control their static and
Постановлением Президиума РАН премия им. Л.А. Чугаева РАН присуждена д.х.н. М.А. Кискину, д.х.н. А.А. Сидорову и чл.-корр. РАН В.К. Иванову за цикл работ «Координационная химия как основа для создания новых функциональных материалов».
#российскиеученые #ионх
#российскиеученые #ионх
Полиморфизм координационных пероксосоединений
Учеными из Института общей и неорганической химии им. Н.С. Курнакова РАН и Факультета химии Высшей школы экономики получены и охарактеризованы два кристаллических полиморфа дикумилпероксида трифенилсурьмы(V) Ph3Sb(OOCMe2Ph)2. Это первый известный случай полиморфизма координационных пероксосоединений. Анализ кристаллических структур пероксокомплексов р-элементов показал, что комплексы с органическими пероксидами, пероксо- и гидропероксолигандами имеют схожие геометрические параметры координационного фрагмента Э-О-О, что может быть проявлением близких координирующих свойств различных типов пероксолигандов.
Результаты работы, выполненной в рамках проекта РНФ (№ 24-13-00426), опубликованы в журнале Structural Chemistry.
N.S. Mayorov, P.A. Egorov, A.G. Medvedev, A.A. Mikhaylov,E.V. Fatyushina, I.A. Buldashov, P.V. Prikhodchenko. Polymorphism of triphenylantimony(V) bis cumylperoxide. Structural Chemistry (2024). DOI: 10.1007/s11224-024-02434-x. https://doi.org/10.1007/s11224-024-02434-x
#российскаянаука #ионх
Учеными из Института общей и неорганической химии им. Н.С. Курнакова РАН и Факультета химии Высшей школы экономики получены и охарактеризованы два кристаллических полиморфа дикумилпероксида трифенилсурьмы(V) Ph3Sb(OOCMe2Ph)2. Это первый известный случай полиморфизма координационных пероксосоединений. Анализ кристаллических структур пероксокомплексов р-элементов показал, что комплексы с органическими пероксидами, пероксо- и гидропероксолигандами имеют схожие геометрические параметры координационного фрагмента Э-О-О, что может быть проявлением близких координирующих свойств различных типов пероксолигандов.
Результаты работы, выполненной в рамках проекта РНФ (№ 24-13-00426), опубликованы в журнале Structural Chemistry.
N.S. Mayorov, P.A. Egorov, A.G. Medvedev, A.A. Mikhaylov,E.V. Fatyushina, I.A. Buldashov, P.V. Prikhodchenko. Polymorphism of triphenylantimony(V) bis cumylperoxide. Structural Chemistry (2024). DOI: 10.1007/s11224-024-02434-x. https://doi.org/10.1007/s11224-024-02434-x
#российскаянаука #ионх
SpringerLink
Polymorphism of triphenylantimony(V) bis-cumylperoxide
Structural Chemistry - Two polymorphs of triphenylantimony(V) bis-cumylperoxide were obtained by the interaction of triphenylantimony(V) dihalides with cumene hydroperoxide in an aromatic...
Решение актуальных задач с использованием пучков заряженных частиц комплекса NICA
В Объединенном институте ядерных исследований в подмосковной Дубне активно развивается инфраструктура ARIADNA, нацеленная на использование пучков заряженных частиц ускорительного комплекса NICA для решения прикладных задач. В работах на базе инфраструктуры ARIADNA участвуют более 20 научных, образовательных и научно-производственных организаций, сотрудничающих в формате международной научной коллаборации.
В 2023 году ИОНХ РАН стал участником коллаборации по радиационному материаловедению и тестированию электроники «ARIADNA-MSTE», а тематика совместных научных исследований в мае 2024 года получила поддержку со стороны Минобрнауки России. В рамках этой работы, направленной на проведение экспериментов в области радиационного материаловедения и тестирования радиационной стойкости функциональных материалов, научным сотрудникам ИОНХ РАН был достигнут ряд важных результатов.
■ Получены серии образцов и проведен физико-химический анализ аэрогелей, в том числе монолитных, на основе оксида германия, оксида кремния, полиамидов, которые пригодны для проведения испытаний с использованием пучков высокоэнергетичных заряженных частиц. Проведены пилотные эксперименты и получены тестовые образцы бинарных аэрогелей SiO2-B2O3, имеющих перспективы применения в качестве сверхлегких нейтронзащитных материалов при реализации методов бор-нейтронозахватной терапии онкологических заболеваний.
■ В части разработки новых материалов для радиационной защиты космических аппаратов изучены возможности реакционного искрового плазменного спекания для изготовления ультравысокотемпературных керамических композитов состава ZrB2-30 об.%SiC и (ZrB2-HfB2)-30 об.% SiC. Определена структура, электропроводность, работа выхода электрона и стойкость к окислению образцов этих веществ.
■ С целью решения задач по созданию защитных покрытий авиакосмической техники, энергетических установок, материалов для иммобилизации радиоактивных веществ синтезированы и исследованы детально охарактеризованные образцы титанатов РЗЭ, включая высокоэнтропийные титанаты со структурой пирохлора.
■ Для разработки новых материалов, имеющих высокую радиационную стойкость и пригодных для длительной работы в полях ускоренных ионов высоких энергий, подготовлены образцы каменной керамики и нового композитного материала на основе минеральных волокон и наполнителя в виде измельченной магматической породы. Разработаны протоколы имитационных испытаний этих материалов на пучках комплекса NICA.
■ Проведенные исследования послужили дополнительным импульсом к развитию новых технологий создания радиационно-стойких материалов. В частности, на основании полученных результатов был предложен простой и энергосберегающий способ изготовления плотной керамики из оксида индия-железа-цинка, экспериментально установлены ее физико-механические характеристики и проведена теоретическая оценка радиационной стойкости в условиях воздействия ионизирующего излучения.
Результаты этих изысканий нашли отражение в научных статьях, опубликованных в престижных рецензируемых журналах «Ceramics», «Nanosystems: Physics, Chemistry, Mathematics», «Стекло и керамика».
Проверка образцов разработанных материалов на устойчивость к воздействию пучков ускоренных ионов высоких энергий комплекса NICA позволит установить возможность применения предложенных способов для создания конструкционных радиационно-защитных материалов нового поколения. Плодотворное научное взаимодействие между ОИЯИ и ИОНХ РАН по реализации совместных исследований продолжится в 2025 году, на который запланирован очередной сеанс работы комплекса NICA. В ходе сеанса наряду с выполнением экспериментов в области фундаментальной физики предусмотрена реализация программы прикладных исследований с использованием инфраструктуры ARIADNA.
#инфраструктуранауки #ионх
В Объединенном институте ядерных исследований в подмосковной Дубне активно развивается инфраструктура ARIADNA, нацеленная на использование пучков заряженных частиц ускорительного комплекса NICA для решения прикладных задач. В работах на базе инфраструктуры ARIADNA участвуют более 20 научных, образовательных и научно-производственных организаций, сотрудничающих в формате международной научной коллаборации.
В 2023 году ИОНХ РАН стал участником коллаборации по радиационному материаловедению и тестированию электроники «ARIADNA-MSTE», а тематика совместных научных исследований в мае 2024 года получила поддержку со стороны Минобрнауки России. В рамках этой работы, направленной на проведение экспериментов в области радиационного материаловедения и тестирования радиационной стойкости функциональных материалов, научным сотрудникам ИОНХ РАН был достигнут ряд важных результатов.
■ Получены серии образцов и проведен физико-химический анализ аэрогелей, в том числе монолитных, на основе оксида германия, оксида кремния, полиамидов, которые пригодны для проведения испытаний с использованием пучков высокоэнергетичных заряженных частиц. Проведены пилотные эксперименты и получены тестовые образцы бинарных аэрогелей SiO2-B2O3, имеющих перспективы применения в качестве сверхлегких нейтронзащитных материалов при реализации методов бор-нейтронозахватной терапии онкологических заболеваний.
■ В части разработки новых материалов для радиационной защиты космических аппаратов изучены возможности реакционного искрового плазменного спекания для изготовления ультравысокотемпературных керамических композитов состава ZrB2-30 об.%SiC и (ZrB2-HfB2)-30 об.% SiC. Определена структура, электропроводность, работа выхода электрона и стойкость к окислению образцов этих веществ.
■ С целью решения задач по созданию защитных покрытий авиакосмической техники, энергетических установок, материалов для иммобилизации радиоактивных веществ синтезированы и исследованы детально охарактеризованные образцы титанатов РЗЭ, включая высокоэнтропийные титанаты со структурой пирохлора.
■ Для разработки новых материалов, имеющих высокую радиационную стойкость и пригодных для длительной работы в полях ускоренных ионов высоких энергий, подготовлены образцы каменной керамики и нового композитного материала на основе минеральных волокон и наполнителя в виде измельченной магматической породы. Разработаны протоколы имитационных испытаний этих материалов на пучках комплекса NICA.
■ Проведенные исследования послужили дополнительным импульсом к развитию новых технологий создания радиационно-стойких материалов. В частности, на основании полученных результатов был предложен простой и энергосберегающий способ изготовления плотной керамики из оксида индия-железа-цинка, экспериментально установлены ее физико-механические характеристики и проведена теоретическая оценка радиационной стойкости в условиях воздействия ионизирующего излучения.
Результаты этих изысканий нашли отражение в научных статьях, опубликованных в престижных рецензируемых журналах «Ceramics», «Nanosystems: Physics, Chemistry, Mathematics», «Стекло и керамика».
Проверка образцов разработанных материалов на устойчивость к воздействию пучков ускоренных ионов высоких энергий комплекса NICA позволит установить возможность применения предложенных способов для создания конструкционных радиационно-защитных материалов нового поколения. Плодотворное научное взаимодействие между ОИЯИ и ИОНХ РАН по реализации совместных исследований продолжится в 2025 году, на который запланирован очередной сеанс работы комплекса NICA. В ходе сеанса наряду с выполнением экспериментов в области фундаментальной физики предусмотрена реализация программы прикладных исследований с использованием инфраструктуры ARIADNA.
#инфраструктуранауки #ионх
MDPI
Reactive Spark Plasma Sintering and Oxidation of ZrB2-SiC and ZrB2-HfB2-SiC Ceramic Materials
This study presents the fabrication possibilities of ultra-high-temperature ceramics of ZrB2-30 vol.%SiC and (ZrB2-HfB2)-30 vol.% SiC composition using the reaction spark plasma sintering of composite powders ZrB2(HfB2)-(SiO2-C) under two-stage heating conditions.…