Big Data AI
16.8K subscribers
832 photos
98 videos
19 files
833 links
@haarrp - админ

Вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейроннным сетям

@data_analysis_ml - анализ данных

@ai_machinelearning_big_data

@itchannels_telegram - важное для программиста

РКН: clck.ru/3Fmqxe
加入频道
🖥 Llama-3.1-Nemotron-70B: набор файнтюн-моделей и датасет HelpSteer2 от NVIDIA.

NVIDIA опубликовала на HuggingFace 4 версии Llama-3.1-Nemotron-70B:

▶️ Llama-3.1-Nemotron-70B-Instruct

Модель получила улучшение в задачах ответа на вопросы и выполнение пользовательских инструкций. Обучение проводилось с использованием RLHF (REINFORCE) на основе Llama-3.1-Nemotron-70B-Reward и датасета HelpSteer2-Preference.

Nemotron-70B-Instruct достигла высоких результатов в тестах Arena Hard (85.0), AlpacaEval 2 LC (57.6) и GPT-4-Turbo MT-Bench (8.98), и обошла GPT-4o и Claude 3.5 Sonnet.

🟠Llama-3.1-Nemotron-70B-Instruct-HF

Версия с поддержкой Transformers, полученная путем конвертации, без какого-либо обучения.

Квантованные версии Llama-3.1-Nemotron-70B-Instruct-HF в формате GGUF с разрядностями от 1-bit (16.75 Gb) до 8-bit (74.98 Gb).

▶️ Llama-3.1-Nemotron-70B-Reward

Модель с функционалом чата, рассуждений и специальными навыками для оценки качества ответов других LLM. Она использует английский язык и способна оценивать ответы длиной до 4096 токенов, присваивая им баллы, отражающие их качество.

Основана на Llama-3.1-70B-Instruct Base и использует комбинацию методов Bradley Terry и SteerLM Regression Reward Modelling.

Nemotron-70B-Reward занимает первое место в RewardBench.

🟠Llama-3.1-Nemotron-70B-Reward-HF

Версия с поддержкой Transformers, полученная путем конвертации, без какого-либо обучения.

Квантованная версия Llama-3.1-Nemotron-70B-Reward-HF в формате MLX (40 Gb).

Вместе с моделями опубликован датасет HelpSteer2 - набор данных на английском языке, предназначенный для обучения reward-моделей, которые используются для повышения полезности, фактической точности и связности ответов других LLM.

HelpSteer2 содержит 21 362 строки, каждая из которых включает в себя запрос, ответ и пять аннотированных человеком атрибутов ответа: полезность, правильность, связность, сложность и многословность.

⚠️ Представленные модели требуют систему с как минимум 4 GPU NVIDIA (40 Gb) или 2 GPU (80 Gb) и 150 Gb свободного места на диске.

⚠️ Для локального развертывания Llama-3.1-Nemotron-70B без поддержки Transformers рекомендуется использовать NVIDIA NeMo Framework и TRT-LLM.


📌Лицензирование моделей: Llama 3.1 Community License.

📌Лицензирование датасета : CC-BY-4.0


🟡Коллекция моделей на HF
🟡Arxiv
🟡Датасет
🟡Demo


@ai_machinelearning_big_data

#AI #ML #LLM #Nemotron #NVIDIA
🌟 Важным преимуществом новой версии стала её совместимость с широким спектром аппаратного обеспечения NVIDIA, включая архитектуры Ampere, Hopper и Turing. Модель оптимизирована для работы на различных GPU, от мощных H100 до более доступных A100

🔗 Подробнее: *клик*

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍61🔥1
Forwarded from Machinelearning
📌Руководство по эффективному использованию промптов для LLM от разработчиков из GoogleDeepMind.

Туториал ориентируется на нетехническую аудиторию, которая имеет опыт взаимодействия с большими языковыми моделями.

В первой половине представлены ментальные конструкции природы посттренинга и промптов. Вторая половина содержит более конкретные предписания и высокоуровневую процедуру промпт-инжиниринга.

Авторы, Varun Godbole и Ellie Pavlick подчеркивают, что поиск «идеальной» подсказки — это итеративный процесс, аналогичный настройке модели, который в лучшем случае является эмпирическим, а в худшем - алхимическим.

▶️ Содержание:

🟢Для кого предназначен этот документ?
🟢Зачем нужно это руководство?
🟢Background трейна: предварительная и последующая подготовка
🟢Рекомендации по промптам
🟢Рудиментарное "руководство по стилю" для промптов
🟢Процедура итерации новых системных инструкций
🟢Некоторые мысли о том, когда полезна LLM
🟢Дополнительные ресурсы


📌Лицензирование: Creative Commons Attribution 4.0 International Public License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Prompt #Github #Tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42🔥2
Forwarded from Machinelearning
🌟 SmolTalk: синтетический англоязычный датасет для обучения LLM.

SmolTalk - это синтетический датасет, разработанный HuggingFace для обучения SmolTalk: новый синтетический набор данных для обучения больших языковых моделей LLM с учителем. Он состоит из 2 млн. строк и был использован для создания семейства моделей SmolLM2-Instruct. SmolTalk включает в себя как новые, так и существующие наборы данных.

Новые наборы данных:

🟢Smol-Magpie-Ultra (400 тыс. строк);
🟢Smol-constraints (36 тыс. строк);
🟢Smol-rewrite (50 тыс. строк);
🟢Smol-summarize (101 тыс. строк).

Существующие общедоступные наборы данных:

🟠OpenHermes2.5 (100 тыс. строк);
🟠MetaMathQA (50 тыс. строк);
🟠NuminaMath-CoT (1120 тыс. строк);
🟠Self-Oss-Starcoder2-Instruct (1120 тыс. строк);
🟠SystemChats2.0 (30 тыс. строк);
🟠LongAlign (примеры на английском языке с менее 16 тыс. токенов);
🟠Everyday-conversations (50 тыс. строк);
🟠APIGen-Function-Calling (80 тыс. строк);
🟠Explore-Instruct-Rewriting (30 тыс. строк).

SmolTalk сравнили недавно выпущенным набором данных Orca AgentInstruct 1M, обучив SmolLM2 на обоих наборах данных с использованием одинаковой конфигурации обучения.

Результаты показали, что SmolTalk показал значительные улучшения в производительности модели, особенно в задачах математики, программирования и следованию системным промптам. Наблюдались также значительные улучшения в масштабе 7B при обучении Mistral-7B на SmolTalk, особенно по показателям IFEval, BBH, GS8Mk и MATH.

▶️Загрузка датасета для трейна:

from datasets import load_dataset

ds = load_dataset("HuggingFaceTB/smoltalk", "all", split="train")
# to load the train split of a specific subset such as smol-magpie-ultra, you can do
ds = load_dataset("HuggingFaceTB/smoltalk", "smol-magpie-ultra", split="train")


📌Лицензирование: Apache 2.0 License.


🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #HuggingFace #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥2
Forwarded from Machinelearning
📌 Пятидневный интенсивный курс по GenAI от Google и Kaggle.

Google совместно с Kaggle представили пятидневный интенсивный курс по генеративному искусственному интеллекту, который доступен в формате самостоятельного обучения.

Курс, который проходил в прямом эфире с 11 по 15 ноября 2024 года, охватывает базовые технологии и методы генеративного ИИ. Программа включает изучение базовых моделей, инженерии промптов, векторных баз данных и эмбедингов, ИИ-агентов, специализированных моделей для конкретных областей и MLOps для GenAi.

Каждый день курса посвящен определенной теме и включает теоретические материалы, практические задания и возможность взаимодействия с экспертами Google.

Участники изучат развитие LLM, начиная с трансформеров и заканчивая техниками тонкой настройки и ускорения инференса. Познакомятся с методами инженерии промптов для оптимизации взаимодействия с LLM.

В рамках курса будут рассмотрены концепции эмбедингов и векторных баз данных, алгоритмы векторного поиска и научатся создавать ИИ-агентов, понимая их основные компоненты и итеративный процесс разработки.

Курс включает создание и применение специализированных LLM: SecLM и Med-PaLM, с комментариями разработчиков. Участники узнают, как адаптировать практики MLOps для генеративного ИИ и использовать инструменты Vertex AI для базовых моделей и приложений генеративного ИИ.

В рамках практических занятий на платформе Kaggle участники смогут применить полученные знания, создавая системы вопросов и ответов на основе извлечения информации, нейронные сети классификации и агентные системы заказа.

Курс разработан экспертами Google: Анантой Навалгарией, Марком Макдональдом, Пейдж Бейли и другими.

⚠️ Для доступа к коду курса необходимы аккаунты на Kaggle (c верификацией номера телефона), Google Ai Studio (для создания API KEY).


🟡Страница курса
🟡Сообщество в Discord


@ai_machinelearning_big_data

#AI #ML #LLM #GenAI #Course
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍3🔥2
Forwarded from Machinelearning
⚡️ Релиз IBM Granite 3.1.

IBM представила Granite 3.1, обновление семейства открытых и высокопроизводительных LLM, оптимизированных для корпоративного использования. Обновление принесло семейству повышение производительности, точности в критически важных корпоративных сценариях: использование инструментов, RAG и рабочие процессы на основе AI агентов.

В этом релизе особое внимание уделялось улучшению обработки длинных текстов благодаря расширенному контекстному окну и детекту галлюцинаций. Все модели семейства Granite 3 получили длину контекстного окна в 128 тысяч токенов. Для сравнения, это примерно 300-страничная книга.

Набор LLM Granite 3.1 8B и 2B, базовые и инструктивные версии. Флагманская Granite 3.1 8B достигает одних из самых высоких средних баллов среди открытых моделей своего класса на Hugging Face OpenLLM Leaderboard.

MoE-модели Granite 3.1 3B и 1B c 800M и 400M активных параметров соответственно и их инструктивные версии.

Granite Embedding в 4 размерах (125M и 30M для английского языка и 278M и 107М - мультиязычные), которые поддерживают 12 языков: английский, немецкий, испанский, французский, японский, португальский, арабский, чешский, итальянский, корейский, голландский и китайский.

Granite Guardian 3.1 8B и 2B - специализированные модели обнаружения галлюцинаций при вызовах функций. Они отслеживают каждый вызов функции на предмет синтаксических и семантических отклонений, повышая достоверность и управляемость в рабочих процессах.

▶️Вместе с моделями, IBM представила инструменты и фреймворки с открытым исходным кодом:

🟠Docling - инструмент для подготовки документов к RAG, предобучению и тонкой настройке ( извлечение информации из форматов PDF, DOCX, изображения, PPTX, XLSX, HTML и AsciiDoc).

🟠Bee - фреймфорк создания масштабируемых приложений на основе AI агентов.

⚠️ Все модели Granite 3.1, Granite Guardian 3.1 и Granite Embedding доступны в средах: IBM watsonx.ai, Hugging Face, LM Studio, Ollama и Replicate.


📌Лицензирование: Apache 2.0 license.


🟡Статья
🟡Набор моделей
🟡Документация


@ai_machinelearning_big_data

#AI #ML #LLM #Embeddings #IBM #Granite
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52🔥1🤮1
Forwarded from Machinelearning
🧠 Helium 1 preview 2b

Kyutai labs выпустили Helium-1 Preview, 2B многоязычный LLM для edge девайсов и мобильных устройств.

Модель, обучена на 2,5 Т токенов и превосходит Qwen 2.5 1.5B🔥

> Превосходит/сопоставим с Owen 1.5B, Gemma 2B и Llama 3B
> обучен на 2.5T токенов с размером контекста 4096
> использует дистилляцию на уровне 7B модели
> разработчики планируют добавить больше языков, выпустить полную версию
> открытый код

🤗 HF: https://huggingface.co/kyutai/helium-1-preview-2b

@ai_machinelearning_big_data


#Helium #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍1🔥1
Forwarded from Machinelearning
🚀Только что выпущено новое семейство моделей генерации кода Salesforce (SFR-Embedding-Code), занявшее 1-е место на бенчмарке CoIR!

Модель доступна в в 2-х размерах: 2B, 400M.

Основные характеристики:
1️⃣ Модель 2B: Занимает первое место в CoIR.
2️⃣ Модель 400M: демонстрирует лучшие показатели среди моделей на 0,5B параметров.
3️⃣ Поддерживает 12 языков программирования, Python, Java, C++, JavaScript, C# и другие!

Пример Запуска:

import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel

# Each query needs to be accompanied by an corresponding instruction describing the task.
query_instruction_example = "Given Code or Text, retrieval relevant content"
queries = [
"how to implement quick sort in Python?"
]

# No instruction needed for retrieval passages
passages = [
"def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)",
"def bubble_sort(arr):\n n = len(arr)\n for i in range(n):\n for j in range(0, n-i-1):\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]\n return arr"
]

# load model with tokenizer
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-Code-2B_R', trust_remote_code=True)

# get the embeddings
max_length = 32768
query_embeddings = model.encode_queries(queries, instruction=query_instruction_example, max_length=max_length)
passage_embeddings = model.encode_corpus(passages, max_length=max_length)

# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)

scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())



Документация
Модель 400M
Модель 2B


📌Лицензирование моделей: CC-BY-NC-SA-4.0 License.


#CodeAI #MLResearch #SOTA #OpenScience #code #llm #ml
2🔥2
Forwarded from Machinelearning
🔸 Gated DeltaNet: гибридная архитектура нейронных сетей с управлением памятью.

Gated DeltaNet - экспериментальная архитектура, разработанная NVIDIA для управления памятью в контексте линейных трансформеров, которая может решить проблемы с забыванием в моделях, обрабатывающих длинные последовательности данных.

Gated DeltaNet предлагает использовать одновременно дельта-правило и гейтинг. Дельта-правило обновляет память модели, заменяя устаревшую информацию на новую, а механизм гейтинга удаляет ненужную информацию из памяти, чтобы она не мешала модели работать эффективно.

Архитектура Gated DeltaNet была разработана на основе алгоритма, который параллелит вычисления дельта-правила с использованием представления WY и оптимизирует работу с GPU на уровне тензорных ядер.

Перфоманс-тестирование Gated DeltaNet проводилось на бенчмарках языкового моделирования, ризонинга, контекстного извлечения, экстраполяции длины и понимания объемного контекста.

Модель Gated DeltaNet превзошла Mamba2 и DeltaNet на всех этих тестах. Например - улучшенная точность на задачах S-NIAH-2 и S-NIAH-3, где Gated DeltaNet показала более эффективное управление памятью по сравнению с DeltaNet и Mamba2 и превосходство в задачах ризонинга.

Гибридные архитектуры, сочетающие слои Gated DeltaNet с вниманием скользящего окна или слоями Mamba2 повысили эффективность обучения и производительность моделей.

Тестовые GatedDeltaNet-H1 и GatedDeltaNet-H2 дали еще более высокие результаты, используя комбинации Gated DeltaNet + SWA и Mamba2 + Gated DeltaNet + SWA соответственно.

Gated DeltaNet показала самые низкие показатели перплексии при экстраполяции на длинные последовательности до 20 тыс. токенов и продемонстрировала превосходные способности в извлечении информации, обучении в контексте и отслеживании состояния в задачах LongBench.

🔸Практическая реализация обучения Gated DeltaNet на Pytorch доступна в репозитории на Github

📌Лицензирование:

🟢Некоммерческое использование: Nvidia Source Code License-NC

🟠Коммерческое использование: по запросу через форму NVIDIA Research Licensing

🟡Arxiv

🟡GitHub

@ai_machinelearning_big_data


#AI #ML #LLM #NVIDIA #GatedDeltaNet
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍32🙏1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ Первый Open Source аналог Deep Research от OpenAI.

Реализация ИИ-ресерчера, который непрерывно ищет информацию по запросу пользователя, пока система не убедится, что собрала все необходимые данные.

Для этого он использует несколько сервисов:

- SERPAPI: Для выполнения поиска в Google.
- Jina: Для получения и извлечения содержимого веб-страниц.
- OpenRouter (модель по умолчанию: anthropic/claude-3.5-haiku): Взаимодействует с LLM для генерации поисковых запросов, оценки релевантности страниц и понимания контекста.

🟢 Функции
- Итеративный цикл исследования: Система итеративно уточняет свои поисковые запросы.
- Асинхронная обработка: Поиск, парсинг веб-страниц и оценка контекста - выполняются параллельно для повышения скорости.
- Фильтрация дубликатов: Агрегирует и дедуплицирует ссылки в каждом цикле, проверяя, что одна и та же информация не будет обработана дважды.

Github
Google Colab

@ai_machinelearning_big_data


#opensource #llm #ai #ml #DeepResearcher
Please open Telegram to view this post
VIEW IN TELEGRAM
👍63🔥1
Forwarded from Machinelearning
✔️ Макрон объявил, что Франция планирует инвестировать в развитие ИИ 109 миллиардов евро в ближайшие годы.

Он уточнил, что среди инвесторов французских проектов в области ИИ будут компании из Объединенных Арабских Эмиратов, Соединенных Штатов, Канады и самой Франции.

Кроме того, Макрон подчеркнул намерение Парижа сотрудничать с Нью-Дели и Пекином для продвижения технологий искусственного интеллекта. «Мы стремимся к совместной работе с Индией», – сказал он, добавив, что Франция также намерена взаимодействовать с Китаем и Соединенными Штатами, однако не хочет зависеть ни от одной страны.

Относительно обсуждений о возможном запрете использования китайского чат-бота DeepSeek в некоторых странах, Макрон выразил мнение, что запрет технологических решений лишь на основании их происхождения является неоправданным шагом.
Новость

✔️OpenAI дебютировал на Super Bowl, выпустив рекламу ChatGPT стоимостью 14 миллионов долларов.
Видео

✔️ ByteDance показали новый генератор видео Goku.

- Goku: генеративная модель видео на основе потоков.
- Goku+: Модель, которая позиционируется, как модель для генерации видеорекламы и обещает быть в 100 раз дешевле, чем традиционные методы создания видео-рекламы.
Аrxiv

✔️ Свежий гайд, который поможет вам тренировать свой собственный ризониг LLM.

С этим ноутбуком примерно за 2 часа можно обучить модель Qwen 0.5B на математическом наборе данных GSM8K, используя обучение с подкреплением!
Colab Demo

✔️ LeRobot — это образовательный проект, направленный на создание бюджетного робота, стоимость каждой руки которого составляет всего 110 долларов. С помощью обычного ноутбука пользователи могут обучать робота различным навыкам.

Проект предлагает платформу с готовыми моделями, наборами данных и инструментами для работы с робототехникой на базе PyTorch.

На данный момент доступны предварительно обученные модели, демонстрационные среды для симуляций, а также готовые скрипты для обучения и управления реальными роботами.

Также предоставляются рекомендации по ведению логов и оценке моделей, а также ссылки на исследовательские материалы и примеры кода для профилирования.
Github

✔️ Стартап Ильи Суцкевера, сооснователя OpenAI, оценили в $20 миллиардов.

Safe Superintellgence(SSI), основанная в июне 2024, еще ничего не выпускает и не зарабатывает, так как первым продуктом обещают сразу ни больше ни меньше — safe AGI.

А пока просто посмотрите на сайт компании, которая УЖЕ привлекла миллиард долларов и собирается привлечь еще.
ssi.inc

Уверенность в себе и команде выглядит именно так 😎

@ai_machinelearning_big_data


#openai #deeplearning #opensource #ai #ml #llm #machinelearning #guide #news #chatgpt #qwen #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3😁21🔥1