Instance Shadow Detection with A Single-Stage Detector
Deep framework, and an evaluation metric to approach this new task.
Github: https://github.com/stevewongv/InstanceShadowDetection
Instance Shadow Detection: https://github.com/stevewongv/SSIS
Video: https://www.youtube.com/watch?v=p0b_2SsFypw
Colab: https://colab.research.google.com/drive/1y9UpS5uA1YuoMyvYVzcKL4ltA_FDu_x0?usp=sharing
Paper: https://arxiv.org/abs/2207.04614v1
Datasets: https://paperswithcode.com/dataset/soba
👉 @bigdata_1
Deep framework, and an evaluation metric to approach this new task.
Github: https://github.com/stevewongv/InstanceShadowDetection
Instance Shadow Detection: https://github.com/stevewongv/SSIS
Video: https://www.youtube.com/watch?v=p0b_2SsFypw
Colab: https://colab.research.google.com/drive/1y9UpS5uA1YuoMyvYVzcKL4ltA_FDu_x0?usp=sharing
Paper: https://arxiv.org/abs/2207.04614v1
Datasets: https://paperswithcode.com/dataset/soba
👉 @bigdata_1
⚡1
Class-incremental Novel Class Discovery
Github: https://github.com/oatmealliu/class-incd
Paper: https://arxiv.org/abs/2207.08605v1
Dataset: https://paperswithcode.com/dataset/tiny-imagenet
👉 @bigdata_1
Github: https://github.com/oatmealliu/class-incd
Paper: https://arxiv.org/abs/2207.08605v1
Dataset: https://paperswithcode.com/dataset/tiny-imagenet
👉 @bigdata_1
⚡1
KGI (Knowledge Graph Induction) for slot filling
Github: https://github.com/ibm/kgi-slot-filling
KILT data and knowledge source: https://github.com/facebookresearch/KILT
Paper: https://arxiv.org/abs/2207.06300v1
Dataset: https://paperswithcode.com/dataset/natural-questions
👉 @bigdata_1
Github: https://github.com/ibm/kgi-slot-filling
KILT data and knowledge source: https://github.com/facebookresearch/KILT
Paper: https://arxiv.org/abs/2207.06300v1
Dataset: https://paperswithcode.com/dataset/natural-questions
👉 @bigdata_1
⚡1
Benchmarking Omni-Vision Representation through the Lens of Visual Realms
Github: https://github.com/ZhangYuanhan-AI/OmniBenchmark
Project: https://zhangyuanhan-ai.github.io/OmniBenchmark
Paper: https://arxiv.org/abs/2207.07106v1
Competition: https://codalab.lisn.upsaclay.fr/competitions/6043
👉 @bigdata_1
Github: https://github.com/ZhangYuanhan-AI/OmniBenchmark
Project: https://zhangyuanhan-ai.github.io/OmniBenchmark
Paper: https://arxiv.org/abs/2207.07106v1
Competition: https://codalab.lisn.upsaclay.fr/competitions/6043
👉 @bigdata_1
👍1
Dynamic Low-Resolution Distillation for Cost-Efficient End-to-End Text Spotting
Github: https://github.com/hikopensource/davar-lab-ocr
Paper: https://arxiv.org/abs/2207.06694v1
Dataset: https://paperswithcode.com/dataset/total-text
👉 @bigdata_1
Github: https://github.com/hikopensource/davar-lab-ocr
Paper: https://arxiv.org/abs/2207.06694v1
Dataset: https://paperswithcode.com/dataset/total-text
👉 @bigdata_1
Language Modelling with Pixels
PIXEL is a language model that operates on text rendered as images, fully removing the need for a fixed vocabulary.
Github: https://github.com/xplip/pixel
Paper: https://arxiv.org/abs/2207.06991v1
Dataset: https://paperswithcode.com/dataset/glue
Pretrained: https://huggingface.co/Team-PIXEL/pixel-base
👉 @bigdata_1
PIXEL is a language model that operates on text rendered as images, fully removing the need for a fixed vocabulary.
Github: https://github.com/xplip/pixel
Paper: https://arxiv.org/abs/2207.06991v1
Dataset: https://paperswithcode.com/dataset/glue
Pretrained: https://huggingface.co/Team-PIXEL/pixel-base
👉 @bigdata_1
CLOSE: Curriculum Learning On the Sharing Extent Towards Better One-shot NAS
Github: https://github.com/walkerning/aw_nas
Paper: https://arxiv.org/abs/2207.07868v1
Dataset: https://paperswithcode.com/dataset/nas-bench-201
👉 @bigdata_1
Github: https://github.com/walkerning/aw_nas
Paper: https://arxiv.org/abs/2207.07868v1
Dataset: https://paperswithcode.com/dataset/nas-bench-201
👉 @bigdata_1
HiFormer: Hierarchical Multi-scale Representations Using Transformers for Medical Image Segmentation
Github: https://github.com/amirhossein-kz/hiformer
Paper: https://arxiv.org/abs/2207.08518v1
Tasks: https://paperswithcode.com/task/medical-image-segmentation
👉 @bigdata_1
Github: https://github.com/amirhossein-kz/hiformer
Paper: https://arxiv.org/abs/2207.08518v1
Tasks: https://paperswithcode.com/task/medical-image-segmentation
👉 @bigdata_1
Automated Crossword Solving
Pretrained models, precomputed FAISS embeddings, and a crossword clue-answer dataset.
Github: https://github.com/albertkx/berkeley-crossword-solver
Paper: https://arxiv.org/abs/2205.09665v1
Dataset: https://www.xwordinfo.com/JSON/
👉 @bigdata_1
Pretrained models, precomputed FAISS embeddings, and a crossword clue-answer dataset.
Github: https://github.com/albertkx/berkeley-crossword-solver
Paper: https://arxiv.org/abs/2205.09665v1
Dataset: https://www.xwordinfo.com/JSON/
👉 @bigdata_1
This media is not supported in your browser
VIEW IN TELEGRAM
FSD: Fully Sparse 3D Object Detection & SST: Single-stride Sparse Transformer
Github: https://github.com/tusimple/sst
Paper: http://arxiv.org/abs/2207.10035
Dataset: https://paperswithcode.com/dataset/waymo-open-dataset
👉 @bigdata_1
Github: https://github.com/tusimple/sst
Paper: http://arxiv.org/abs/2207.10035
Dataset: https://paperswithcode.com/dataset/waymo-open-dataset
👉 @bigdata_1
🔥1
Tip-Adapter: Training-free Adaption of CLIP for Few-shot Classification
Tip-Adapter is a training-free adaption method for CLIP to conduct few-shot classification.
Github: https://github.com/gaopengcuhk/tip-adapter
Paper: https://arxiv.org/abs/2207.09519v1
Dataset: https://paperswithcode.com/dataset/oxford-102-flower
👉 @bigdata_1
Tip-Adapter is a training-free adaption method for CLIP to conduct few-shot classification.
Github: https://github.com/gaopengcuhk/tip-adapter
Paper: https://arxiv.org/abs/2207.09519v1
Dataset: https://paperswithcode.com/dataset/oxford-102-flower
👉 @bigdata_1
👍1
Generative Multiplane Images: Making a 2D GAN 3D-Aware
What is really needed to make an existing 2D GAN 3D-aware? To answer this question, we modify a classical GAN, i.e., StyleGANv2, as little as possible. We find that only two modifications are absolutely necessary: 1) a multiplane image style generator branch which produces a set of alpha maps conditioned on their depth; 2) a pose-conditioned discriminator.
Github: https://github.com/apple/ml-gmpi
Paper: https://arxiv.org/abs/2207.10642v1
Dataset: https://paperswithcode.com/dataset/metfaces
Project: https://xiaoming-zhao.github.io/projects/gmpi/
Pretrained checkpoints: https://drive.google.com/drive/folders/1MEIjen0XOIW-kxEMfBUONnKYrkRATSR_
👉 @bigdata_1
What is really needed to make an existing 2D GAN 3D-aware? To answer this question, we modify a classical GAN, i.e., StyleGANv2, as little as possible. We find that only two modifications are absolutely necessary: 1) a multiplane image style generator branch which produces a set of alpha maps conditioned on their depth; 2) a pose-conditioned discriminator.
Github: https://github.com/apple/ml-gmpi
Paper: https://arxiv.org/abs/2207.10642v1
Dataset: https://paperswithcode.com/dataset/metfaces
Project: https://xiaoming-zhao.github.io/projects/gmpi/
Pretrained checkpoints: https://drive.google.com/drive/folders/1MEIjen0XOIW-kxEMfBUONnKYrkRATSR_
👉 @bigdata_1
Machine Learning Algorithms Explained in Less Than 1 Minute Each
https://www.kdnuggets.com/2022/07/machine-learning-algorithms-explained-less-1-minute.html
👉 @bigdata_1
https://www.kdnuggets.com/2022/07/machine-learning-algorithms-explained-less-1-minute.html
👉 @bigdata_1
Weakly Supervised Object Localization via Transformer with Implicit Spatial Calibration
learnable parameter to dynamically adjust the semantic correlations and spatial context intensities for effective information propagation.
Github: https://github.com/164140757/scm
Paper: https://arxiv.org/abs/2207.10447v1
Dataset: https://paperswithcode.com/dataset/cub-200-2011
👉 @bigdata_1
learnable parameter to dynamically adjust the semantic correlations and spatial context intensities for effective information propagation.
Github: https://github.com/164140757/scm
Paper: https://arxiv.org/abs/2207.10447v1
Dataset: https://paperswithcode.com/dataset/cub-200-2011
👉 @bigdata_1
👍1
SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks
Simple but very effective attention module for Convolutional Neural Networks (ConvNets).
Github: https://github.com/ZjjConan/SimAM
Paper: http://proceedings.mlr.press/v139/yang21o.html
Dataset: https://paperswithcode.com/dataset/cifar-10
Google Drive: https://drive.google.com/drive/folders/1rRT0UCPeRLPdTCJvv43hvAnGnS49nIWn?usp=sharing
👉 @bigdata_1
Simple but very effective attention module for Convolutional Neural Networks (ConvNets).
Github: https://github.com/ZjjConan/SimAM
Paper: http://proceedings.mlr.press/v139/yang21o.html
Dataset: https://paperswithcode.com/dataset/cifar-10
Google Drive: https://drive.google.com/drive/folders/1rRT0UCPeRLPdTCJvv43hvAnGnS49nIWn?usp=sharing
👉 @bigdata_1
🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
Multiface: A Dataset for Neural Face Rendering
Github: https://github.com/facebookresearch/multiface
Paper: https://arxiv.org/abs/2207.11243v1
Dataset: https://paperswithcode.com/dataset/facewarehouse
👉 @bigdata_1
Github: https://github.com/facebookresearch/multiface
Paper: https://arxiv.org/abs/2207.11243v1
Dataset: https://paperswithcode.com/dataset/facewarehouse
👉 @bigdata_1
MAPIE - Model Agnostic Prediction Interval Estimator
MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourite scikit-learn-compatible model for single-output regression or multi-class classification settings.
Github: https://github.com/scikit-learn-contrib/mapie
Paper: https://arxiv.org/abs/2207.12274v1
Docs: https://mapie.readthedocs.io/en/latest/
👉 @bigdata_1
MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourite scikit-learn-compatible model for single-output regression or multi-class classification settings.
Github: https://github.com/scikit-learn-contrib/mapie
Paper: https://arxiv.org/abs/2207.12274v1
Docs: https://mapie.readthedocs.io/en/latest/
👉 @bigdata_1
⚡1
Learning Visual Representation from Modality-Shared Contrastive Language-Image Pre-training
Github: https://github.com/hxyou/msclip
Paper: https://arxiv.org/abs/2207.12661v1
Dataset: https://paperswithcode.com/dataset/sst
👉 @bigdata_1
Github: https://github.com/hxyou/msclip
Paper: https://arxiv.org/abs/2207.12661v1
Dataset: https://paperswithcode.com/dataset/sst
👉 @bigdata_1
❤1
Learning Protein Representations via Complete 3D Graph Networks
DIG: Dive into Graphs is a turnkey library for graph deep learning research.
Github: https://github.com/divelab/DIG
Paper: https://arxiv.org/abs/2207.12600v1
Tutorials: https://diveintographs.readthedocs.io/en/latest/tutorials/graphdf.html
Documentation: https://diveintographs.readthedocs.io/
Benchmarks: https://github.com/divelab/DIG/tree/dig-stable/benchmarks
Dataset: https://paperswithcode.com/dataset/atom3d
👉 @bigdata_1
DIG: Dive into Graphs is a turnkey library for graph deep learning research.
Github: https://github.com/divelab/DIG
Paper: https://arxiv.org/abs/2207.12600v1
Tutorials: https://diveintographs.readthedocs.io/en/latest/tutorials/graphdf.html
Documentation: https://diveintographs.readthedocs.io/
Benchmarks: https://github.com/divelab/DIG/tree/dig-stable/benchmarks
Dataset: https://paperswithcode.com/dataset/atom3d
👉 @bigdata_1
⚡1
ALBench: A Framework for Evaluating Active Learning in Object Detection
An active learning benchmark framework named as ALBench for evaluating active learning in object detection.
Github: https://github.com/industryessentials/ymir
Paper: https://arxiv.org/abs/2207.13339v1
Projects: https://github.com/IndustryEssentials/ymir/projects
Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1
An active learning benchmark framework named as ALBench for evaluating active learning in object detection.
Github: https://github.com/industryessentials/ymir
Paper: https://arxiv.org/abs/2207.13339v1
Projects: https://github.com/IndustryEssentials/ymir/projects
Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1
⚡1