Bi-DexHands: Bimanual Dexterous Manipulation via Reinforcement Learning
Bi-DexHands provides a collection of bimanual dexterous manipulations tasks and reinforcement learning algorithms.
Github: https://github.com/pku-marl/dexteroushands
Isaac Gym: https://developer.nvidia.com/isaac-gym
Paper: https://arxiv.org/abs/2206.08686
👉 @bigdata_1
Bi-DexHands provides a collection of bimanual dexterous manipulations tasks and reinforcement learning algorithms.
Github: https://github.com/pku-marl/dexteroushands
Isaac Gym: https://developer.nvidia.com/isaac-gym
Paper: https://arxiv.org/abs/2206.08686
👉 @bigdata_1
⚡1👍1
SETR - Pytorch
Github: https://github.com/920232796/setr-pytorch
Paper: https://arxiv.org/abs/2206.11520v1
Dataset: https://www.kaggle.com/c/carvana-image-masking-challenge/data
👉 @bigdata_1
Github: https://github.com/920232796/setr-pytorch
Paper: https://arxiv.org/abs/2206.11520v1
Dataset: https://www.kaggle.com/c/carvana-image-masking-challenge/data
👉 @bigdata_1
⚡1
MindWare: Efficient Open-source AutoML System
MindWare is an efficient open-source system to help users to automate the process of: 1) data pre-processing, 2) feature engineering, 3) algorithm selection, 4) architecture design, 5) hyper-parameter tuning, and 6) model ensembling.
Github: https://github.com/PKU-DAIR/mindware
Docs: https://mindware.readthedocs.io/en/latest/
Paper: https://arxiv.org/abs/2206.09423v1
👉 @bigdata_1
MindWare is an efficient open-source system to help users to automate the process of: 1) data pre-processing, 2) feature engineering, 3) algorithm selection, 4) architecture design, 5) hyper-parameter tuning, and 6) model ensembling.
Github: https://github.com/PKU-DAIR/mindware
Docs: https://mindware.readthedocs.io/en/latest/
Paper: https://arxiv.org/abs/2206.09423v1
👉 @bigdata_1
👍2⚡1
Tntorch - Tensor Network Learning with PyTorch
PyTorch-powered modeling and learning library using tensor networks. Installation: pip install tntorch
Github: https://github.com/rballester/tntorch
Docs site: http://tntorch.readthedocs.io/
Paper: https://arxiv.org/abs/2206.11128v1
👉 @bigdata_1
PyTorch-powered modeling and learning library using tensor networks. Installation: pip install tntorch
Github: https://github.com/rballester/tntorch
Docs site: http://tntorch.readthedocs.io/
Paper: https://arxiv.org/abs/2206.11128v1
👉 @bigdata_1
⚡1
Prosody Cloning in Zero-Shot Multispeaker Text-to-Speech
IMS Toucan is a toolkit for teaching, training and using state-of-the-art Speech Synthesis models.
Github: https://github.com/rballester/tntorch
Pre-Generated Audios: https://multilingualtoucan.github.io/
Cloning prosody across speakers: https://toucanprosodycloningdemo.github.io/
Paper: https://arxiv.org/abs/2206.12229v1
👉 @bigdata_1
IMS Toucan is a toolkit for teaching, training and using state-of-the-art Speech Synthesis models.
Github: https://github.com/rballester/tntorch
Pre-Generated Audios: https://multilingualtoucan.github.io/
Cloning prosody across speakers: https://toucanprosodycloningdemo.github.io/
Paper: https://arxiv.org/abs/2206.12229v1
👉 @bigdata_1
⚡1
Insubstantial Object Detection
Dataset comprised of 600 videos (141,017 frames) covering various distances, sizes, visibility, and scenes captured by different spectral ranges.
Github: https://github.com/calayzhou/iod-video
Project: https://calayzhou.github.io/
Paper: https://arxiv.org/abs/2206.11459v1
Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1
Dataset comprised of 600 videos (141,017 frames) covering various distances, sizes, visibility, and scenes captured by different spectral ranges.
Github: https://github.com/calayzhou/iod-video
Project: https://calayzhou.github.io/
Paper: https://arxiv.org/abs/2206.11459v1
Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1
⚡1
Forecasting Future World Events with Neural Networks
Github: https://github.com/andyzoujm/autocast
Paper: https://arxiv.org/abs/2206.15474v1
Dataset: https://people.eecs.berkeley.edu/~hendrycks/intervalqa.tar.gz
👉 @bigdata_1
Github: https://github.com/andyzoujm/autocast
Paper: https://arxiv.org/abs/2206.15474v1
Dataset: https://people.eecs.berkeley.edu/~hendrycks/intervalqa.tar.gz
👉 @bigdata_1
❤3⚡1
How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
👉 @bigdata_1
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
👉 @bigdata_1
⚡1
A Comprehensive Survey on Deep Gait Recognition: Algorithms, Datasets and Challenges
Github: https://github.com/shiqiyu/opengait
Paper: https://arxiv.org/abs/2206.13732v1
Dataset: https://paperswithcode.com/dataset/usf
👉 @bigdata_1
Github: https://github.com/shiqiyu/opengait
Paper: https://arxiv.org/abs/2206.13732v1
Dataset: https://paperswithcode.com/dataset/usf
👉 @bigdata_1
⚡1
Identifying and Combating Bias in Segmentation Networks by leveraging multiple resolutions
Github: https://github.com/Deep-MI/FastSurfer
Colab: https://colab.research.google.com/github/Deep-MI/FastSurfer/blob/master/Tutorial/Tutorial_FastSurferCNN_QuickSeg.ipynb
Paper: https://arxiv.org/abs/2206.14919v1
👉 @bigdata_1
Github: https://github.com/Deep-MI/FastSurfer
Colab: https://colab.research.google.com/github/Deep-MI/FastSurfer/blob/master/Tutorial/Tutorial_FastSurferCNN_QuickSeg.ipynb
Paper: https://arxiv.org/abs/2206.14919v1
👉 @bigdata_1
⚡1
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling
Github: https://github.com/timothyhtimothy/fast-vqa
Paper: https://arxiv.org/abs/2207.02595v1
Dataset: https://paperswithcode.com/dataset/kinetics
👉 @bigdata_1
Github: https://github.com/timothyhtimothy/fast-vqa
Paper: https://arxiv.org/abs/2207.02595v1
Dataset: https://paperswithcode.com/dataset/kinetics
👉 @bigdata_1
⚡1
Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level Physically-Grounded Augmentations
For the first time brings the power of robust data augmentations into regularizing the NeRF training.
Github: https://github.com/vita-group/aug-nerf
Paper: https://arxiv.org/abs/2207.01164v1
Cloud Drive: https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
👉 @bigdata_1
For the first time brings the power of robust data augmentations into regularizing the NeRF training.
Github: https://github.com/vita-group/aug-nerf
Paper: https://arxiv.org/abs/2207.01164v1
Cloud Drive: https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
👉 @bigdata_1
⚡1
Bounding Box Deep Learning: The Future of Video Annotation
https://www.kdnuggets.com/2022/07/bounding-box-deep-learning-future-video-annotation.html
👉 @bigdata_1
https://www.kdnuggets.com/2022/07/bounding-box-deep-learning-future-video-annotation.html
👉 @bigdata_1
⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
SeqDeepFake: Detecting and Recovering Sequential DeepFake Manipulation
First Seq-DeepFake dataset, where face images are manipulated sequentially with corresponding annotations of sequential facial manipulation vectors.
Github: https://github.com/rshaojimmy/seqdeepfake
Project: https://rshaojimmy.github.io/Projects/SeqDeepFake
Paper: https://arxiv.org/pdf/2207.02204.pdf
Dataset: https://paperswithcode.com/dataset/imagenet
👉 @bigdata_1
First Seq-DeepFake dataset, where face images are manipulated sequentially with corresponding annotations of sequential facial manipulation vectors.
Github: https://github.com/rshaojimmy/seqdeepfake
Project: https://rshaojimmy.github.io/Projects/SeqDeepFake
Paper: https://arxiv.org/pdf/2207.02204.pdf
Dataset: https://paperswithcode.com/dataset/imagenet
👉 @bigdata_1
⚡1
Understanding the Design of a Convolutional Neural Network
https://machinelearningmastery.com/understanding-the-design-of-a-convolutional-neural-network/
👉 @bigdata_1
https://machinelearningmastery.com/understanding-the-design-of-a-convolutional-neural-network/
👉 @bigdata_1
⚡1
YOLOv7
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
Github: https://github.com/wongkinyiu/yolov7
Paper: https://arxiv.org/abs/2207.02696v1
Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
Github: https://github.com/wongkinyiu/yolov7
Paper: https://arxiv.org/abs/2207.02696v1
Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1
❤2⚡1
Object Centric Open Vocabulary Detection
Object-centric alignment of the language embeddings from the CLIP model.
Github: https://github.com/hanoonaR/object-centric-ovd
Paper: https://arxiv.org/abs/2207.03482v1
Dataset: https://paperswithcode.com/dataset/imagenet
👉 @bigdata_1
Object-centric alignment of the language embeddings from the CLIP model.
Github: https://github.com/hanoonaR/object-centric-ovd
Paper: https://arxiv.org/abs/2207.03482v1
Dataset: https://paperswithcode.com/dataset/imagenet
👉 @bigdata_1
⚡1
The 5 Best Places To Host Your Data Science Portfolio
https://www.kdnuggets.com/2022/07/5-best-places-host-data-science-portfolio.html
👉 @bigdata_1
https://www.kdnuggets.com/2022/07/5-best-places-host-data-science-portfolio.html
👉 @bigdata_1
⚡1
An Efficiency Study for SPLADE Models
SParse Lexical AnD Expansion Model for First Stage Ranking.
Github: https://github.com/naver/splade
Paper: https://arxiv.org/abs/2207.03834v1
Dataset: https://paperswithcode.com/dataset/ms-marco
👉 @bigdata_1
SParse Lexical AnD Expansion Model for First Stage Ranking.
Github: https://github.com/naver/splade
Paper: https://arxiv.org/abs/2207.03834v1
Dataset: https://paperswithcode.com/dataset/ms-marco
👉 @bigdata_1
⚡1
PeopleSansPeople: A Synthetic Data Generator for Human-Centric Computer Vision
Human-centric privacy-preserving synthetic data generator with highly parametrized domain randomization.
Github: https://github.com/unity-technologies/peoplesanspeople
Paper: https://arxiv.org/abs/2207.05025v1
Demo Video: https://www.youtube.com/watch?v=mQ_DUdB70dc
👉 @bigdata_1
Human-centric privacy-preserving synthetic data generator with highly parametrized domain randomization.
Github: https://github.com/unity-technologies/peoplesanspeople
Paper: https://arxiv.org/abs/2207.05025v1
Demo Video: https://www.youtube.com/watch?v=mQ_DUdB70dc
👉 @bigdata_1