Полезное чтение про данные, технологии и не только:
- Chart Smarter, Not Harder: Plotly Now Offers Universal DataFrame Support [1] о том как разработчики движка визуализации Plotly многократно ускорили визуализацию графиков используя библиотеку Narwhals поверх Polars и pyArrow. Познавательные цифры и опыт для тех кто сталкивается с медленной отрисовкой графиков.
- Siyuan [2] персональная система управления знаниями и заметками. Китайский аналог Notion и Obsidian. Открытый код под AGPL, бесплатно для личного использования. Много интеграции в китайскую экосистему вроде WeChat и тд
- Requestly [3] расширение для браузера, прокси, для перехвата запросов. Необходимо всем разработчикам работающим с API. Открытый код под AGPL и онлайн сервис за деньги. По сути конкурент Postman
- Maxun [4] ещё один no-code инструмент для скрейпинга сайтов. Облегчает жизнь тем кто не хочет кодировать то что можно не кодировать. Открытый код, AGPL
- VeilStream [5] для разнообразия не вполне обычный коммерческий сервис, прокси для PostgreSQL который принимает запросы от пользователей, а ответы отдаёт отфильтрованными от персональных данных. Меня не покидает ощущение что это несколько, ммм, извращённое решение, но тем не менее. Оно есть и, видимо, кто-то его покупает.
- 10 Ways to Work with Large Files in Python: Effortlessly Handle Gigabytes of Data! [6] статья полностью для джунов, но именно джунам её прочитать обязательно. Там есть небольшая реклама Dask и игнорирование Polars, DuckDB и тд. А если говорить серьёзно, то всё зависит от того какие у тебя большие данные, в каком они состоянии и что с ними планируется делать. К примеру, обработка десятков и сотен гигабайт бинарных данных происходит иначе.
- Python Rgonomics 2025 [7] материал о том как работать в Python тем кто учил R. Полезное чтение для тех кто живёт в двух мирах или переходит с R на Python.
Ссылки:
[1] https://plotly.com/blog/chart-smarter-not-harder-universal-dataframe-support/
[2] https://github.com/siyuan-note/siyuan
[3] https://github.com/requestly/requestly
[4] https://github.com/getmaxun/maxun
[5] https://www.veilstream.com/
[6] https://blog.devgenius.io/10-ways-to-work-with-large-files-in-python-effortlessly-handle-gigabytes-of-data-aeef19bc0429
[7] https://www.emilyriederer.com/post/py-rgo-2025/
#readings #opensource #data #datatools
- Chart Smarter, Not Harder: Plotly Now Offers Universal DataFrame Support [1] о том как разработчики движка визуализации Plotly многократно ускорили визуализацию графиков используя библиотеку Narwhals поверх Polars и pyArrow. Познавательные цифры и опыт для тех кто сталкивается с медленной отрисовкой графиков.
- Siyuan [2] персональная система управления знаниями и заметками. Китайский аналог Notion и Obsidian. Открытый код под AGPL, бесплатно для личного использования. Много интеграции в китайскую экосистему вроде WeChat и тд
- Requestly [3] расширение для браузера, прокси, для перехвата запросов. Необходимо всем разработчикам работающим с API. Открытый код под AGPL и онлайн сервис за деньги. По сути конкурент Postman
- Maxun [4] ещё один no-code инструмент для скрейпинга сайтов. Облегчает жизнь тем кто не хочет кодировать то что можно не кодировать. Открытый код, AGPL
- VeilStream [5] для разнообразия не вполне обычный коммерческий сервис, прокси для PostgreSQL который принимает запросы от пользователей, а ответы отдаёт отфильтрованными от персональных данных. Меня не покидает ощущение что это несколько, ммм, извращённое решение, но тем не менее. Оно есть и, видимо, кто-то его покупает.
- 10 Ways to Work with Large Files in Python: Effortlessly Handle Gigabytes of Data! [6] статья полностью для джунов, но именно джунам её прочитать обязательно. Там есть небольшая реклама Dask и игнорирование Polars, DuckDB и тд. А если говорить серьёзно, то всё зависит от того какие у тебя большие данные, в каком они состоянии и что с ними планируется делать. К примеру, обработка десятков и сотен гигабайт бинарных данных происходит иначе.
- Python Rgonomics 2025 [7] материал о том как работать в Python тем кто учил R. Полезное чтение для тех кто живёт в двух мирах или переходит с R на Python.
Ссылки:
[1] https://plotly.com/blog/chart-smarter-not-harder-universal-dataframe-support/
[2] https://github.com/siyuan-note/siyuan
[3] https://github.com/requestly/requestly
[4] https://github.com/getmaxun/maxun
[5] https://www.veilstream.com/
[6] https://blog.devgenius.io/10-ways-to-work-with-large-files-in-python-effortlessly-handle-gigabytes-of-data-aeef19bc0429
[7] https://www.emilyriederer.com/post/py-rgo-2025/
#readings #opensource #data #datatools
Plotly
Chart Smarter, Not Harder: Plotly Now Offers Universal DataFrame Support
Learn how you can boost Dash data app performance with the new Plotly.py collaboration with Narwhals, a dataframe compatibility layer.
AI и политика
Dario Amodei, CEO стартапа Anthropic, создателей LLM моделей Claude, написал в блоге [1] призыв к ужесточению экспортного контроля США за чипами для обучения ИИ. Дословно это звучит как Export controls serve a vital purpose: keeping democratic nations at the forefront of AI development. У него под постом в твиттере развернулась большая полемика с теми кто против ограничений на развитие ИИ [2]. Большая часть комментариев звучит как при всём уважении к Вашей команде, но DeepSeek молодцы и развивать ИИ модели с открытым кодом важно.
Разработка ИИ стремительно политизируется вместе с демократизацией ИИ инструментов.
Ссылки:
[1] https://darioamodei.com/on-deepseek-and-export-controls
[2] https://x.com/DarioAmodei/status/1884636410839535967
#ai #opensource #deepseek #llm
Dario Amodei, CEO стартапа Anthropic, создателей LLM моделей Claude, написал в блоге [1] призыв к ужесточению экспортного контроля США за чипами для обучения ИИ. Дословно это звучит как Export controls serve a vital purpose: keeping democratic nations at the forefront of AI development. У него под постом в твиттере развернулась большая полемика с теми кто против ограничений на развитие ИИ [2]. Большая часть комментариев звучит как при всём уважении к Вашей команде, но DeepSeek молодцы и развивать ИИ модели с открытым кодом важно.
Разработка ИИ стремительно политизируется вместе с демократизацией ИИ инструментов.
Ссылки:
[1] https://darioamodei.com/on-deepseek-and-export-controls
[2] https://x.com/DarioAmodei/status/1884636410839535967
#ai #opensource #deepseek #llm
Darioamodei
Dario Amodei — On DeepSeek and Export Controls
Полезные ссылки про данные, технологии и не только:
- DocumentDB: Open-Source Announcement [1] похоже Microsoft выложили в открытый код [2] новый NoSQL продукт, прямой конкурент MongoDB. Внутри там FerretDB и PostgreSQL, бенчмарки пока не наблюдаются, что странно. Может быть в ClickBench/JSONBench они появятся через какое-то время. Пока главное достоинство лицензия MIT.
- ai_query function [3] в Databricks есть функция ai_query которую можно использовать прямо в SQL запросе и которая позволяет обрабатывать данные с помощью одной из LLM специальным запросом. Осталось подождать когда такая функция или аналог появятся во всех современных RDBMS
- Human-Computer Input via a Wrist-Based sEMG Wearable [4] исследование Metaпро уличную магию про использование жестов для управления устройствами. Помимо того что это может поменять многое в обыденной жизни тут ещё и много открытых наборов данных Я думал такие устройства будут делать в виде тонких перчаток, а оказывается что можно в виде браслета.
- pg_mooncake. Postgres extension for 1000x faster analytics [5] расширение для колоночных таблиц для PostgreSQL для ускорения аналитики. Внутри, ожидаемо, DuckDB
Ссылки:
[1] https://opensource.microsoft.com/blog/2025/01/23/documentdb-open-source-announcement/
[2] https://github.com/microsoft/documentdb
[3] https://docs.databricks.com/en/sql/language-manual/functions/ai_query.html#examples
[4] https://www.meta.com/blog/surface-emg-wrist-white-paper-reality-labs/
[5] https://github.com/Mooncake-Labs/pg_mooncake
#opensource #rdbms #postgresql #duckdb #datatools
- DocumentDB: Open-Source Announcement [1] похоже Microsoft выложили в открытый код [2] новый NoSQL продукт, прямой конкурент MongoDB. Внутри там FerretDB и PostgreSQL, бенчмарки пока не наблюдаются, что странно. Может быть в ClickBench/JSONBench они появятся через какое-то время. Пока главное достоинство лицензия MIT.
- ai_query function [3] в Databricks есть функция ai_query которую можно использовать прямо в SQL запросе и которая позволяет обрабатывать данные с помощью одной из LLM специальным запросом. Осталось подождать когда такая функция или аналог появятся во всех современных RDBMS
- Human-Computer Input via a Wrist-Based sEMG Wearable [4] исследование Meta
- pg_mooncake. Postgres extension for 1000x faster analytics [5] расширение для колоночных таблиц для PostgreSQL для ускорения аналитики. Внутри, ожидаемо, DuckDB
Ссылки:
[1] https://opensource.microsoft.com/blog/2025/01/23/documentdb-open-source-announcement/
[2] https://github.com/microsoft/documentdb
[3] https://docs.databricks.com/en/sql/language-manual/functions/ai_query.html#examples
[4] https://www.meta.com/blog/surface-emg-wrist-white-paper-reality-labs/
[5] https://github.com/Mooncake-Labs/pg_mooncake
#opensource #rdbms #postgresql #duckdb #datatools
Microsoft Open Source Blog
DocumentDB: Open-Source Announcement - Microsoft Open Source Blog
Learn more on how Microsoft Open Source can help with you with your data stores with the announcement of DocumentDB.
В рубрике интересных инструментов работы с данными Mathesar [1] ещё одна альтернатива Airtable, с открытым кодом под GPL-3.0 и похожий во многом на Teable о котором я ранее писал.
Если вкратце то это UI поверх таблиц в PostgreSQL. Выглядит как удобная штука в жанре онлайн MS Access.
Альтернативы Airtable - это хорошая новость, со многими данными надо работать руками и не всё доверишь облакам.
Ссылки:
[1] https://mathesar.org
#opensource #datatools
Если вкратце то это UI поверх таблиц в PostgreSQL. Выглядит как удобная штука в жанре онлайн MS Access.
Альтернативы Airtable - это хорошая новость, со многими данными надо работать руками и не всё доверишь облакам.
Ссылки:
[1] https://mathesar.org
#opensource #datatools
Вышла новая версия Duckdb 1.2.0 [1] что важно - это существенная оптимизация скорости чтения данных. Пишут что обновили парсер для CSV [2] ускорив его до 15% и общие ускорение на 13% по тестам TPC-H SF100.
Из другого важного - CSV парсер теперь поддерживает кодировки UTF-16 и Latin-1. Это хорошо, но пока недостаточно. Один из актуальных недостатков DuckDB в том что до сих пор он поддерживал только CSV файлы в кодировке UTF-8, а из всех остальных кодировок данные надо было преобразовывать. Почему так лично я до сих пор не знаю, подозреваю что дело в том что команда DuckDB фокусируется на повышении производительности.
Там есть и другие изменения, но, в целом, менее значимые. Основные сценарии использования DuckDB связаны с парсингом CSV и работой с другими дата-файлами и с общей производительностью.
Ссылки:
[1] https://duckdb.org/2025/02/05/announcing-duckdb-120
[2] https://github.com/duckdb/duckdb/pull/14260
#opensource #duckdb #datatools #rdbms
Из другого важного - CSV парсер теперь поддерживает кодировки UTF-16 и Latin-1. Это хорошо, но пока недостаточно. Один из актуальных недостатков DuckDB в том что до сих пор он поддерживал только CSV файлы в кодировке UTF-8, а из всех остальных кодировок данные надо было преобразовывать. Почему так лично я до сих пор не знаю, подозреваю что дело в том что команда DuckDB фокусируется на повышении производительности.
Там есть и другие изменения, но, в целом, менее значимые. Основные сценарии использования DuckDB связаны с парсингом CSV и работой с другими дата-файлами и с общей производительностью.
Ссылки:
[1] https://duckdb.org/2025/02/05/announcing-duckdb-120
[2] https://github.com/duckdb/duckdb/pull/14260
#opensource #duckdb #datatools #rdbms
DuckDB
Announcing DuckDB 1.2.0
The DuckDB team is happy to announce that today we're releasing DuckDB version 1.2.0, codenamed “Histrionicus”.
Возвращаю на голову шляпу дата инженера и продолжаю про разные инструменты.
Одна из рабочих идей у меня сейчас - это инструмент автоматического документирования датасетов/баз данных с приоритетом на "дикие данные" когда файл с данными есть, а документации на него нет. Очень частая ситуация с порталами открытых данных.
Причём потребность в таком инструменте уже очень давно есть, а вот наглядно я видел только облачный сервис CastorDoc который в этом продвинулся и только некоторые дата каталоги. А я сам экспериментировал и создал утилиту metacrafter для идентификации семантических типов данных. Но потребность в автодокументировании шире. Это, как минимум:
1. Автоматизация описания полей набора данных, желательно на нескольких языках: английский, испанский, русский, армянский и тд.
2. Написание описания набора данных так чтобы по датасету или его части можно было бы рассказать о чём он.
3. Описание структуры датасета не просто перечислением полей, а указание типа, описания полей, числа уникальных записей и тд.
4. Автоидентификация и документирование справочников. Почти всегда эти справочники есть и почти всегда их необходимо идентифицировать и описывать.
5. Автоматическая генерация типовых запросов к данным по аналогии с автогенерацией кода для доступа к API, нужны автосгенерированные запросы для доступа к данным.
Это всё самое очевидное, чуть более неочевидное это генерация документации по шаблонам, на разных языках и многое другое.
Самое простое и быстрое решение которое я вижу - это связка DuckDB + LLM модель, простые эксперименты подтверждают что это возможно и несложно. Но если Вы знаете хорошие/эффективные/удобные инструменты документирования датасетов - поделитесь, интересно их посмотреть в работе. Особенно те что с открытым кодом.
#opendata #datadocumentation #opensource #datatools #ideas
Одна из рабочих идей у меня сейчас - это инструмент автоматического документирования датасетов/баз данных с приоритетом на "дикие данные" когда файл с данными есть, а документации на него нет. Очень частая ситуация с порталами открытых данных.
Причём потребность в таком инструменте уже очень давно есть, а вот наглядно я видел только облачный сервис CastorDoc который в этом продвинулся и только некоторые дата каталоги. А я сам экспериментировал и создал утилиту metacrafter для идентификации семантических типов данных. Но потребность в автодокументировании шире. Это, как минимум:
1. Автоматизация описания полей набора данных, желательно на нескольких языках: английский, испанский, русский, армянский и тд.
2. Написание описания набора данных так чтобы по датасету или его части можно было бы рассказать о чём он.
3. Описание структуры датасета не просто перечислением полей, а указание типа, описания полей, числа уникальных записей и тд.
4. Автоидентификация и документирование справочников. Почти всегда эти справочники есть и почти всегда их необходимо идентифицировать и описывать.
5. Автоматическая генерация типовых запросов к данным по аналогии с автогенерацией кода для доступа к API, нужны автосгенерированные запросы для доступа к данным.
Это всё самое очевидное, чуть более неочевидное это генерация документации по шаблонам, на разных языках и многое другое.
Самое простое и быстрое решение которое я вижу - это связка DuckDB + LLM модель, простые эксперименты подтверждают что это возможно и несложно. Но если Вы знаете хорошие/эффективные/удобные инструменты документирования датасетов - поделитесь, интересно их посмотреть в работе. Особенно те что с открытым кодом.
#opendata #datadocumentation #opensource #datatools #ideas
В рубрике интересной визуализации данных DataRepublican [1] проект по визуализации доноров и получателей средств НКО в США и ряд других визуализаций. Можно сказать этакое пересечение Республиканской партии США и дата журналистики, редкое явление, но можно убедиться что реальное. На них ссылаются Wikileaks [2] подсвечивая расходы денег налогоплательщиков США на Internews [3], НКО получавшую существенную долю средств от USAID и поддерживавшее значительную часть СМИ по всему миру.
Что характерно в аккаунте Wikileaks большая волна идёт против USAID [4] с публикациями множества документов подтверждающих что мол они "лицемерные нехорошие ребята" и прямой инструмент мягкой силы США. В общем немного странно видеть такое единодушие WikiLeaks и республиканских блогеров, но допускаю что что-то пропустил.
А теперь про чисто техническое
Сама визуализация на DataRepublican интересная ещё и по тому как она сделана. Я вначале думал что там какая-то графовая база данных внутри, вроде Neo4J и сложные запросы через openCypher, но всё оказалось интереснее. В графах они подгружают на клиента ZIP файлы с CSV файлами внутри, около 7 мегабайт и распаковывают и отображают их через Javascript.
Очень оригинальное решение, я давно такого не видел. Вместо API грузить на клиента большие заархивированные батчи и обрабатывать их там после распаковки.
У них всё это, данные и код, есть в открытом репозитории, можно будет как-нибудь изучить [5]
Ссылки:
[1] https://datarepublican.com
[2] https://x.com/wikileaks/status/1888098131537183170
[3] https://datarepublican.com/expose/?eins=943027961
[4] https://x.com/wikileaks
[5] https://github.com/DataRepublican/datarepublican
#opendata #opensource #wikileaks #dataviz
Что характерно в аккаунте Wikileaks большая волна идёт против USAID [4] с публикациями множества документов подтверждающих что мол они "лицемерные нехорошие ребята" и прямой инструмент мягкой силы США. В общем немного странно видеть такое единодушие WikiLeaks и республиканских блогеров, но допускаю что что-то пропустил.
А теперь про чисто техническое
Сама визуализация на DataRepublican интересная ещё и по тому как она сделана. Я вначале думал что там какая-то графовая база данных внутри, вроде Neo4J и сложные запросы через openCypher, но всё оказалось интереснее. В графах они подгружают на клиента ZIP файлы с CSV файлами внутри, около 7 мегабайт и распаковывают и отображают их через Javascript.
Очень оригинальное решение, я давно такого не видел. Вместо API грузить на клиента большие заархивированные батчи и обрабатывать их там после распаковки.
У них всё это, данные и код, есть в открытом репозитории, можно будет как-нибудь изучить [5]
Ссылки:
[1] https://datarepublican.com
[2] https://x.com/wikileaks/status/1888098131537183170
[3] https://datarepublican.com/expose/?eins=943027961
[4] https://x.com/wikileaks
[5] https://github.com/DataRepublican/datarepublican
#opendata #opensource #wikileaks #dataviz
Полезные ссылки про данные, технологии и не только:
- Perforator [1] профайлер приложений от Яндекса и с использованием eBPF [2]. Полезно для отладки многих сложных и простых нативных приложений и отдельно расписано как профилировать и оптимизировать серверные приложения на Python. Выглядит как очень добротный open source продукт
- GPT Researcher [3] автономный инструмент для исследований с аккуратной простановкой цитат, использует внешние и локальные источники. Интегрирован с OpenAI
- The Illustrated DeepSeek-R1 [4] подробно о DeepSeek в картинках, позволяет легче ухватить суть продукта
- DataLumos [5] проект Университета Мичигана по архивации государственных и социальных данных, построен на базе OpenICPSR [6], данных не очень много, но они адаптированы под исследовательские задачи
- Data Formulator: Create Rich Visualizations with AI [7] полноценный движок для визуализации данных с помощью ИИ. Выпущен исследователями из Microsoft вместе с научной работой, под лицензией MIT. Выглядит как proof-of-concept, не факт что его можно применять в практических задачах сразу и из коробки, но для экспериментов самое оно. И для идей и вдохновения
- Chat2DB [8] открытый код (community edition) и сервис по управлению базами данных с помощью ИИ. Всё самое вкусное вынесли в коммерческие версии, но посмотреть стоит в любом случае.
Ссылки:
[1] https://perforator.tech
[2] https://ebpf.io
[3] https://github.com/assafelovic/gpt-researcher
[4] https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
[5] https://www.datalumos.org
[6] https://www.openicpsr.org/openicpsr/
[7] https://github.com/microsoft/data-formulator
[8] https://chat2db.ai
#opensource #datatools #opendata #ai
- Perforator [1] профайлер приложений от Яндекса и с использованием eBPF [2]. Полезно для отладки многих сложных и простых нативных приложений и отдельно расписано как профилировать и оптимизировать серверные приложения на Python. Выглядит как очень добротный open source продукт
- GPT Researcher [3] автономный инструмент для исследований с аккуратной простановкой цитат, использует внешние и локальные источники. Интегрирован с OpenAI
- The Illustrated DeepSeek-R1 [4] подробно о DeepSeek в картинках, позволяет легче ухватить суть продукта
- DataLumos [5] проект Университета Мичигана по архивации государственных и социальных данных, построен на базе OpenICPSR [6], данных не очень много, но они адаптированы под исследовательские задачи
- Data Formulator: Create Rich Visualizations with AI [7] полноценный движок для визуализации данных с помощью ИИ. Выпущен исследователями из Microsoft вместе с научной работой, под лицензией MIT. Выглядит как proof-of-concept, не факт что его можно применять в практических задачах сразу и из коробки, но для экспериментов самое оно. И для идей и вдохновения
- Chat2DB [8] открытый код (community edition) и сервис по управлению базами данных с помощью ИИ. Всё самое вкусное вынесли в коммерческие версии, но посмотреть стоит в любом случае.
Ссылки:
[1] https://perforator.tech
[2] https://ebpf.io
[3] https://github.com/assafelovic/gpt-researcher
[4] https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
[5] https://www.datalumos.org
[6] https://www.openicpsr.org/openicpsr/
[7] https://github.com/microsoft/data-formulator
[8] https://chat2db.ai
#opensource #datatools #opendata #ai
ebpf.io
eBPF - Introduction, Tutorials & Community Resources
eBPF is a revolutionary technology that can run sandboxed programs in the Linux kernel without changing kernel source code or loading a kernel module.
Ещё один проект по быстрому созданию приложений на основе датасетов Preswald [1]. С открытым кодом, под лицензией Apache 2.0, вместо low code/no-code пропагандируют принцип Code-First Simplicity (минимальный, но необходимый код), а также декларативное программирование через конфигурацию в toml файлах.
Когда и кому такой инструмент зайдёт? Тем кому нужно быстро визуализировать данные в наглядном виде и предоставлять их в таком виде пользователям. В этом смысле продукт похож чем-то на Observable или Datasette [2] .
На мой взгляд в части демонстрации возможностей инструмента команда как-то сильно недорабатывает, не видно интерактивных демо, а с другой стороны это же просто ещё один инструмент в копилку аналогичных. Возможно, полезный в будущем.
Ссылки:
[1] https://github.com/StructuredLabs/preswald
[2] https://datasette.io
#opensource #datatools
Когда и кому такой инструмент зайдёт? Тем кому нужно быстро визуализировать данные в наглядном виде и предоставлять их в таком виде пользователям. В этом смысле продукт похож чем-то на Observable или Datasette [2] .
На мой взгляд в части демонстрации возможностей инструмента команда как-то сильно недорабатывает, не видно интерактивных демо, а с другой стороны это же просто ещё один инструмент в копилку аналогичных. Возможно, полезный в будущем.
Ссылки:
[1] https://github.com/StructuredLabs/preswald
[2] https://datasette.io
#opensource #datatools
GitHub
GitHub - StructuredLabs/preswald: 🐵 Preswald is an open-source Python SDK for turning code into interactive data apps. It makes…
🐵 Preswald is an open-source Python SDK for turning code into interactive data apps. It makes analytics easy to build, deploy, and share. - StructuredLabs/preswald
Полезные ссылки про данные, технологии и не только:
- Kreuzberg [1] библиотека для Python по извлечению текста из документов, поддерживает множество форматов, внутри использует Pandoc и Tesseract OCR. Создано как раз для использования в задачах RAG (Retrieval Augmented Generation) с прицелом на локальную обработку данных и минимумом зависимостей. Лицензия MIT
- Validoopsie [2] другая библиотека для Python для валидации данных. Использует библиотеку Narwhals благодаря которой подключается к почти любым видами дата-фреймов. Выглядит полезной альтернативой Great Expectations, лично для меня в валидации данных глобальный нерешённый вопрос в том что тут правильнее, код или декларативное программирования. Иначе говоря, правила проверки должны ли быть отчуждаемыми от языка разработки. Здесь валидация встроена в код, но поверх можно сделать и декларативный движок. Лицензия MIT
- Scripton [3] коммерческое IDE для Python с необычной фичей визуализации данных в реальном времени. Есть только скриншоты, записи экрана и коммерческая версия для macOS. Для тех кто занимается алгоритмической визуализацией может быть удобно, для остальных задач пока нет такой уверенности.
- New horizons for Julia [4] по сути статья о том что язык программирования Julia ещё жив и развивается. Правда медленно, на мой взгляд, но вроде как есть позитивное движение за пределами научных областей. Лично я почти не сталкивался с Julia кроме как на уровне примеров кода, но хорошо если он кому-то нравится и полезен.
- Data-Driven Scrollytelling with Quarto [5] визуализация дата-историй с помощью движка Quarto, итоги конкурса таких визуализаций с большим числом примеров и победителей. Примеры все от команды компании Posit которая этот open-source движок Quarto и разрабатывает. Скажу отдельно что это очень правильно. Если ты делаешь любой движок по визуализации, то просто обязательно надо проводить такие конкурсы.
- The Best Way to Use Text Embeddings Portably is With Parquet and Polars [6] ещё один обзор о том насколько эффективен Parquet в связке с Polars для работы с данными, в данном случае данными карт Magic of the Gathering. Автор тоже задаётся вопросом о том почему Parquet не поддерживается в MS Excel.
- How to Make Superbabies [7] особенно длинный лонгрид о том как генетическими изменениями можно улучшать человека, создавать супер детей или "оптимизированных детей", как ещё пишет автор. Читать и думать об этом надо потому что всё идёт к тому что скоро это станет ещё одной острой социальной и геополитической темой.
Ссылки:
[1] https://github.com/Goldziher/kreuzberg
[2] https://github.com/akmalsoliev/Validoopsie
[3] https://scripton.dev/
[4] https://lwn.net/Articles/1006117/
[5] https://posit.co/blog/closeread-prize-winners/
[6] https://minimaxir.com/2025/02/embeddings-parquet/
[7] https://www.lesswrong.com/posts/DfrSZaf3JC8vJdbZL/how-to-make-superbabies
#opensource #data #datatools #dataviz #genetics #python
- Kreuzberg [1] библиотека для Python по извлечению текста из документов, поддерживает множество форматов, внутри использует Pandoc и Tesseract OCR. Создано как раз для использования в задачах RAG (Retrieval Augmented Generation) с прицелом на локальную обработку данных и минимумом зависимостей. Лицензия MIT
- Validoopsie [2] другая библиотека для Python для валидации данных. Использует библиотеку Narwhals благодаря которой подключается к почти любым видами дата-фреймов. Выглядит полезной альтернативой Great Expectations, лично для меня в валидации данных глобальный нерешённый вопрос в том что тут правильнее, код или декларативное программирования. Иначе говоря, правила проверки должны ли быть отчуждаемыми от языка разработки. Здесь валидация встроена в код, но поверх можно сделать и декларативный движок. Лицензия MIT
- Scripton [3] коммерческое IDE для Python с необычной фичей визуализации данных в реальном времени. Есть только скриншоты, записи экрана и коммерческая версия для macOS. Для тех кто занимается алгоритмической визуализацией может быть удобно, для остальных задач пока нет такой уверенности.
- New horizons for Julia [4] по сути статья о том что язык программирования Julia ещё жив и развивается. Правда медленно, на мой взгляд, но вроде как есть позитивное движение за пределами научных областей. Лично я почти не сталкивался с Julia кроме как на уровне примеров кода, но хорошо если он кому-то нравится и полезен.
- Data-Driven Scrollytelling with Quarto [5] визуализация дата-историй с помощью движка Quarto, итоги конкурса таких визуализаций с большим числом примеров и победителей. Примеры все от команды компании Posit которая этот open-source движок Quarto и разрабатывает. Скажу отдельно что это очень правильно. Если ты делаешь любой движок по визуализации, то просто обязательно надо проводить такие конкурсы.
- The Best Way to Use Text Embeddings Portably is With Parquet and Polars [6] ещё один обзор о том насколько эффективен Parquet в связке с Polars для работы с данными, в данном случае данными карт Magic of the Gathering. Автор тоже задаётся вопросом о том почему Parquet не поддерживается в MS Excel.
- How to Make Superbabies [7] особенно длинный лонгрид о том как генетическими изменениями можно улучшать человека, создавать супер детей или "оптимизированных детей", как ещё пишет автор. Читать и думать об этом надо потому что всё идёт к тому что скоро это станет ещё одной острой социальной и геополитической темой.
Ссылки:
[1] https://github.com/Goldziher/kreuzberg
[2] https://github.com/akmalsoliev/Validoopsie
[3] https://scripton.dev/
[4] https://lwn.net/Articles/1006117/
[5] https://posit.co/blog/closeread-prize-winners/
[6] https://minimaxir.com/2025/02/embeddings-parquet/
[7] https://www.lesswrong.com/posts/DfrSZaf3JC8vJdbZL/how-to-make-superbabies
#opensource #data #datatools #dataviz #genetics #python
Свежий полезный инструмент smallpond [1] от команды DeepSeek AI для тех кто работает с данными большого объёма и с необходимостью их распределения. Под капотом у него DuckDB и 3FS [2], другая разработка от DeepSeek AI в виде распределённой файловой системы с оптимизацией под обучение ИИ.
Ключевое - масштабируемость до петабайтных датасетов. Думаю что полезно для всех датасетов начиная с 1 ТБ и с масштабированием, а для данных объёмом поменьше уже будет избыточно.
Ссылки:
[1] https://github.com/deepseek-ai/smallpond
[2] https://github.com/deepseek-ai/3FS
#opensource #data #datatools
Ключевое - масштабируемость до петабайтных датасетов. Думаю что полезно для всех датасетов начиная с 1 ТБ и с масштабированием, а для данных объёмом поменьше уже будет избыточно.
Ссылки:
[1] https://github.com/deepseek-ai/smallpond
[2] https://github.com/deepseek-ai/3FS
#opensource #data #datatools
GitHub
GitHub - deepseek-ai/smallpond: A lightweight data processing framework built on DuckDB and 3FS.
A lightweight data processing framework built on DuckDB and 3FS. - deepseek-ai/smallpond