Свежий интересный продукт по контролю качества данных DQX - Data Quality Framework от Databricks Labs [1].
Плюсы:
- зрелость поскольку Databricks один из лидеров рынка дата инженерии
- хорошая документация, судя по первому взгляду
- декларативное описание тестов в YAML (тут очень субъективно)
- интегрированность и заточенность на работу с Apache Spark
- открытый код на Github
Минусы:
- зависимость от Databricks Workspace в их дата каталоге Unity
- код открыт но лицензия несвободная, а специальная Databricks License с ограничениями [2], вполне возможно внешних контрибьюторов это оттолкнёт
Он очень напоминает движок Soda [3] который тоже даёт возможность декларативного описания тестов, но ещё более заточенный на их облачный сервис и который бесплатен только в рамках 45 дней тестирования. Можно пользоваться из Soda Core, правда, который под лицензией Apache 2.0
Итоговая ситуация такова что из частично открытых остались только движки Soda и great_expectations [4] который также стремительно коммерциализируется, но вроде как его команда обещала сохранить продукт GX Core под лицензией Apache 2.0 и развивать его, но как бы не закончилось также как с Elasticsearch и MongoDB, со сменой лицензии или тем что новые ключевые возможности будут только в облачных сервисах.
А DQX продукт интересный, но хотелось бы то же самое, но без вот этого вот всего (с).
Итого я могу сказать что есть заметный дефицит инструментов контроля качества данных. Сейчас нет ни одного подобного продукта под лицензией MIT, с простой интеграцией и, желательно, декларативным описанием тестов.
Поляна инструментов контроля качества данных совершенно точно заполнена не до конца и "рулят" на нём продукты в гибридном состоянии открытого кода и SaaS платформ.
Ссылки:
[1] https://databrickslabs.github.io/dqx/
[2] https://github.com/databrickslabs/dqx?tab=License-1-ov-file#readme
[3] https://github.com/sodadata/soda-core
[4] https://github.com/great-expectations/great_expectations
#opensource #dataquality #datatools
Плюсы:
- зрелость поскольку Databricks один из лидеров рынка дата инженерии
- хорошая документация, судя по первому взгляду
- декларативное описание тестов в YAML (тут очень субъективно)
- интегрированность и заточенность на работу с Apache Spark
- открытый код на Github
Минусы:
- зависимость от Databricks Workspace в их дата каталоге Unity
- код открыт но лицензия несвободная, а специальная Databricks License с ограничениями [2], вполне возможно внешних контрибьюторов это оттолкнёт
Он очень напоминает движок Soda [3] который тоже даёт возможность декларативного описания тестов, но ещё более заточенный на их облачный сервис и который бесплатен только в рамках 45 дней тестирования. Можно пользоваться из Soda Core, правда, который под лицензией Apache 2.0
Итоговая ситуация такова что из частично открытых остались только движки Soda и great_expectations [4] который также стремительно коммерциализируется, но вроде как его команда обещала сохранить продукт GX Core под лицензией Apache 2.0 и развивать его, но как бы не закончилось также как с Elasticsearch и MongoDB, со сменой лицензии или тем что новые ключевые возможности будут только в облачных сервисах.
А DQX продукт интересный, но хотелось бы то же самое, но без вот этого вот всего (с).
Итого я могу сказать что есть заметный дефицит инструментов контроля качества данных. Сейчас нет ни одного подобного продукта под лицензией MIT, с простой интеграцией и, желательно, декларативным описанием тестов.
Поляна инструментов контроля качества данных совершенно точно заполнена не до конца и "рулят" на нём продукты в гибридном состоянии открытого кода и SaaS платформ.
Ссылки:
[1] https://databrickslabs.github.io/dqx/
[2] https://github.com/databrickslabs/dqx?tab=License-1-ov-file#readme
[3] https://github.com/sodadata/soda-core
[4] https://github.com/great-expectations/great_expectations
#opensource #dataquality #datatools
Написал в рассылку текст Работаем с дата фреймами. Почему не Pandas и какие альтернативы? [1] про альтернативы Pandas такие как Polars, Dask, DuckdB и cuDF. А также там же подборка ссылок на большое число параллельно развивающихся инструментов.
А я повторю тезис что Pandas нужный, полезный и важный, но легаси инструмент у которого есть уже много высокопроизводительных альтернатив значительно упрощающих работу с данными большого объёма на недорогих устройствах.
Ссылки:
[1] https://begtin.substack.com/p/pandas
#opensource #dataengineering #dataframes #datatools
А я повторю тезис что Pandas нужный, полезный и важный, но легаси инструмент у которого есть уже много высокопроизводительных альтернатив значительно упрощающих работу с данными большого объёма на недорогих устройствах.
Ссылки:
[1] https://begtin.substack.com/p/pandas
#opensource #dataengineering #dataframes #datatools
Ivan’s Begtin Newsletter on digital, open and preserved government
Работаем с дата фреймами. Почему не Pandas и какие альтернативы?
Самый популярный инструмент для работы с аналитиков в последние годы - это программная библиотека Pandas для Python.
В рубрике интересных продуктов для работы с данными PuppyGraph [1] (Щенячий граф) стартап и open-source продукт для взаимодействия с SQL базами данных с помощью графовых языков запросов таких как Gremlin и openCypher.
Основной лозунг под которым продукт продвигают это Query your relational data as a graph in real-time. Zero ETL. Главный акцент тут на том что графовые базы данных неудобны всегда были тем что туда необходимо было переносить данные из реляционных баз и это означало увеличение объёмов хранения и затраты ресурсов на обработку данных. А тут движок позволяет работать с условным PostgreSQL напрямую запросами.
Open source версия доступна под лицензией Apache 2.0 [2]. Команда в ноябре 2024 г. подняла $5 миллионов инвестиций [3], а сам продукт в первой версии появился ещё в марте 2024 года.
Ссылки:
[1] https://www.puppygraph.com
[2] https://github.com/puppygraph/puppygraph-query
[3] https://www.puppygraph.com/blog/puppygraph-raises-5-million-in-seed-funding-led-by-defy-vc
#opensource #rdbms #datatools
Основной лозунг под которым продукт продвигают это Query your relational data as a graph in real-time. Zero ETL. Главный акцент тут на том что графовые базы данных неудобны всегда были тем что туда необходимо было переносить данные из реляционных баз и это означало увеличение объёмов хранения и затраты ресурсов на обработку данных. А тут движок позволяет работать с условным PostgreSQL напрямую запросами.
Open source версия доступна под лицензией Apache 2.0 [2]. Команда в ноябре 2024 г. подняла $5 миллионов инвестиций [3], а сам продукт в первой версии появился ещё в марте 2024 года.
Ссылки:
[1] https://www.puppygraph.com
[2] https://github.com/puppygraph/puppygraph-query
[3] https://www.puppygraph.com/blog/puppygraph-raises-5-million-in-seed-funding-led-by-defy-vc
#opensource #rdbms #datatools
На чём быстро, просто и, желательно, недорого построить дашборд? Я лично всегда начинаю выбор с open source инструментов, часть из которых давно стали зрелыми продуктами, а другие позволяют проверить интересные технологии на практике.
Более известные
1. Apache Superset - используется уже повсеместно, много общедоступных инсталляций где можно посмотреть вживую. Например, экземпляр Superset Википедии. Уже зрелый продукт используемый многими компаниями по всему миру.
2. Grafana - довольно быстро вырвавшийся вперед инструмент для визуализации данных. Развивался изначально для отображения метрик и логов, а сейчас визуализирует почти что угодно. Для внутреннего использования очень удобно, для интеграции в свой продукт есть ограничения поскольку открытый код AGPL.
3. Metabase - когда-то основной конкурент Apache Superset, но стали отставать по скорости добавления новых возможностей и живут по принципу SaaS стартапа, с платным облачным сервисом и бесплатным продуктом для сообщества и под открытым кодом.
4. Redash - ещё один pure open-source продукт, открытый код для построения дашбордов , в этот раз под BSD2 лицензией и с поддержкой большого числа SQL и NoSQL источников данных.
Менее известные
5. Briefer - гибрид подготовки тетрадок (notebooks) и дашбордов. Изначально облачный сервис, потом выложили открытый код. Сама идея кажется разумной, но лицензия AGPL-3.0.
6. Quary - позиционируется как open source BI для инженеров. Инженерность, похоже, обеспечивается за счёт панели для SQL запросов? Выглядит простым, что может быть удобно для кого-то и полностью написан на Rust.
Непривычные
7. NeoDash - движок для дашбордов от Neo4J, базы данных и набора инструментов для работы с графами. Отличается той самой заточенностью на графовые данные. Сильно менее популярен чем другие и может быть даже малоизвестен. Лицензия Apache 2.0
8. SDMX Dashboard Generator - совсем редкая штука по созданию визуализации статистики по стандарту SDMX в виде дашборда. Открытый код, лицензия Apache 2.0. Изначально разрабатывался командой Банка международных расчётов (bis.org). Внутри используется движок Dash от Plotly
Не BI, не только дашборды
9. Dash от Plotly - нельзя назвать BI или дашбордопостроителем, это скорее инстурмент для создания data приложений. Может использоваться как компонент собственного продукта потому что лицензия MIT
10. Observable Framework не дашбордер, а генератор статистических сайтов для дата приложений. Идеально для дата сторителлинга и отчуждаемой дата аналитики. Может использоваться как часть своего продукта из-за необычной, но очень пермиссивной лицензии. Важное отличие от других продуктов - это создание статических снапшотов данных и отсутствие динамических запросов к СУБД.
Другие инструменты для дашбордов на которые стоит обратить внимание:
- Lightdash, Vizro, Datalens
#opensource #bi #datatools #dashboards #dataviz
Более известные
1. Apache Superset - используется уже повсеместно, много общедоступных инсталляций где можно посмотреть вживую. Например, экземпляр Superset Википедии. Уже зрелый продукт используемый многими компаниями по всему миру.
2. Grafana - довольно быстро вырвавшийся вперед инструмент для визуализации данных. Развивался изначально для отображения метрик и логов, а сейчас визуализирует почти что угодно. Для внутреннего использования очень удобно, для интеграции в свой продукт есть ограничения поскольку открытый код AGPL.
3. Metabase - когда-то основной конкурент Apache Superset, но стали отставать по скорости добавления новых возможностей и живут по принципу SaaS стартапа, с платным облачным сервисом и бесплатным продуктом для сообщества и под открытым кодом.
4. Redash - ещё один pure open-source продукт, открытый код для построения дашбордов , в этот раз под BSD2 лицензией и с поддержкой большого числа SQL и NoSQL источников данных.
Менее известные
5. Briefer - гибрид подготовки тетрадок (notebooks) и дашбордов. Изначально облачный сервис, потом выложили открытый код. Сама идея кажется разумной, но лицензия AGPL-3.0.
6. Quary - позиционируется как open source BI для инженеров. Инженерность, похоже, обеспечивается за счёт панели для SQL запросов? Выглядит простым, что может быть удобно для кого-то и полностью написан на Rust.
Непривычные
7. NeoDash - движок для дашбордов от Neo4J, базы данных и набора инструментов для работы с графами. Отличается той самой заточенностью на графовые данные. Сильно менее популярен чем другие и может быть даже малоизвестен. Лицензия Apache 2.0
8. SDMX Dashboard Generator - совсем редкая штука по созданию визуализации статистики по стандарту SDMX в виде дашборда. Открытый код, лицензия Apache 2.0. Изначально разрабатывался командой Банка международных расчётов (bis.org). Внутри используется движок Dash от Plotly
Не BI, не только дашборды
9. Dash от Plotly - нельзя назвать BI или дашбордопостроителем, это скорее инстурмент для создания data приложений. Может использоваться как компонент собственного продукта потому что лицензия MIT
10. Observable Framework не дашбордер, а генератор статистических сайтов для дата приложений. Идеально для дата сторителлинга и отчуждаемой дата аналитики. Может использоваться как часть своего продукта из-за необычной, но очень пермиссивной лицензии. Важное отличие от других продуктов - это создание статических снапшотов данных и отсутствие динамических запросов к СУБД.
Другие инструменты для дашбордов на которые стоит обратить внимание:
- Lightdash, Vizro, Datalens
#opensource #bi #datatools #dashboards #dataviz
superset.apache.org
Welcome | Superset
Community website for Apache Superset™, a data visualization and data exploration platform
Полезное чтение про данные, технологии и не только:
- Chart Smarter, Not Harder: Plotly Now Offers Universal DataFrame Support [1] о том как разработчики движка визуализации Plotly многократно ускорили визуализацию графиков используя библиотеку Narwhals поверх Polars и pyArrow. Познавательные цифры и опыт для тех кто сталкивается с медленной отрисовкой графиков.
- Siyuan [2] персональная система управления знаниями и заметками. Китайский аналог Notion и Obsidian. Открытый код под AGPL, бесплатно для личного использования. Много интеграции в китайскую экосистему вроде WeChat и тд
- Requestly [3] расширение для браузера, прокси, для перехвата запросов. Необходимо всем разработчикам работающим с API. Открытый код под AGPL и онлайн сервис за деньги. По сути конкурент Postman
- Maxun [4] ещё один no-code инструмент для скрейпинга сайтов. Облегчает жизнь тем кто не хочет кодировать то что можно не кодировать. Открытый код, AGPL
- VeilStream [5] для разнообразия не вполне обычный коммерческий сервис, прокси для PostgreSQL который принимает запросы от пользователей, а ответы отдаёт отфильтрованными от персональных данных. Меня не покидает ощущение что это несколько, ммм, извращённое решение, но тем не менее. Оно есть и, видимо, кто-то его покупает.
- 10 Ways to Work with Large Files in Python: Effortlessly Handle Gigabytes of Data! [6] статья полностью для джунов, но именно джунам её прочитать обязательно. Там есть небольшая реклама Dask и игнорирование Polars, DuckDB и тд. А если говорить серьёзно, то всё зависит от того какие у тебя большие данные, в каком они состоянии и что с ними планируется делать. К примеру, обработка десятков и сотен гигабайт бинарных данных происходит иначе.
- Python Rgonomics 2025 [7] материал о том как работать в Python тем кто учил R. Полезное чтение для тех кто живёт в двух мирах или переходит с R на Python.
Ссылки:
[1] https://plotly.com/blog/chart-smarter-not-harder-universal-dataframe-support/
[2] https://github.com/siyuan-note/siyuan
[3] https://github.com/requestly/requestly
[4] https://github.com/getmaxun/maxun
[5] https://www.veilstream.com/
[6] https://blog.devgenius.io/10-ways-to-work-with-large-files-in-python-effortlessly-handle-gigabytes-of-data-aeef19bc0429
[7] https://www.emilyriederer.com/post/py-rgo-2025/
#readings #opensource #data #datatools
- Chart Smarter, Not Harder: Plotly Now Offers Universal DataFrame Support [1] о том как разработчики движка визуализации Plotly многократно ускорили визуализацию графиков используя библиотеку Narwhals поверх Polars и pyArrow. Познавательные цифры и опыт для тех кто сталкивается с медленной отрисовкой графиков.
- Siyuan [2] персональная система управления знаниями и заметками. Китайский аналог Notion и Obsidian. Открытый код под AGPL, бесплатно для личного использования. Много интеграции в китайскую экосистему вроде WeChat и тд
- Requestly [3] расширение для браузера, прокси, для перехвата запросов. Необходимо всем разработчикам работающим с API. Открытый код под AGPL и онлайн сервис за деньги. По сути конкурент Postman
- Maxun [4] ещё один no-code инструмент для скрейпинга сайтов. Облегчает жизнь тем кто не хочет кодировать то что можно не кодировать. Открытый код, AGPL
- VeilStream [5] для разнообразия не вполне обычный коммерческий сервис, прокси для PostgreSQL который принимает запросы от пользователей, а ответы отдаёт отфильтрованными от персональных данных. Меня не покидает ощущение что это несколько, ммм, извращённое решение, но тем не менее. Оно есть и, видимо, кто-то его покупает.
- 10 Ways to Work with Large Files in Python: Effortlessly Handle Gigabytes of Data! [6] статья полностью для джунов, но именно джунам её прочитать обязательно. Там есть небольшая реклама Dask и игнорирование Polars, DuckDB и тд. А если говорить серьёзно, то всё зависит от того какие у тебя большие данные, в каком они состоянии и что с ними планируется делать. К примеру, обработка десятков и сотен гигабайт бинарных данных происходит иначе.
- Python Rgonomics 2025 [7] материал о том как работать в Python тем кто учил R. Полезное чтение для тех кто живёт в двух мирах или переходит с R на Python.
Ссылки:
[1] https://plotly.com/blog/chart-smarter-not-harder-universal-dataframe-support/
[2] https://github.com/siyuan-note/siyuan
[3] https://github.com/requestly/requestly
[4] https://github.com/getmaxun/maxun
[5] https://www.veilstream.com/
[6] https://blog.devgenius.io/10-ways-to-work-with-large-files-in-python-effortlessly-handle-gigabytes-of-data-aeef19bc0429
[7] https://www.emilyriederer.com/post/py-rgo-2025/
#readings #opensource #data #datatools
Plotly
Chart Smarter, Not Harder: Plotly Now Offers Universal DataFrame Support
Learn how you can boost Dash data app performance with the new Plotly.py collaboration with Narwhals, a dataframe compatibility layer.
Полезные ссылки про данные, технологии и не только:
- DocumentDB: Open-Source Announcement [1] похоже Microsoft выложили в открытый код [2] новый NoSQL продукт, прямой конкурент MongoDB. Внутри там FerretDB и PostgreSQL, бенчмарки пока не наблюдаются, что странно. Может быть в ClickBench/JSONBench они появятся через какое-то время. Пока главное достоинство лицензия MIT.
- ai_query function [3] в Databricks есть функция ai_query которую можно использовать прямо в SQL запросе и которая позволяет обрабатывать данные с помощью одной из LLM специальным запросом. Осталось подождать когда такая функция или аналог появятся во всех современных RDBMS
- Human-Computer Input via a Wrist-Based sEMG Wearable [4] исследование Metaпро уличную магию про использование жестов для управления устройствами. Помимо того что это может поменять многое в обыденной жизни тут ещё и много открытых наборов данных Я думал такие устройства будут делать в виде тонких перчаток, а оказывается что можно в виде браслета.
- pg_mooncake. Postgres extension for 1000x faster analytics [5] расширение для колоночных таблиц для PostgreSQL для ускорения аналитики. Внутри, ожидаемо, DuckDB
Ссылки:
[1] https://opensource.microsoft.com/blog/2025/01/23/documentdb-open-source-announcement/
[2] https://github.com/microsoft/documentdb
[3] https://docs.databricks.com/en/sql/language-manual/functions/ai_query.html#examples
[4] https://www.meta.com/blog/surface-emg-wrist-white-paper-reality-labs/
[5] https://github.com/Mooncake-Labs/pg_mooncake
#opensource #rdbms #postgresql #duckdb #datatools
- DocumentDB: Open-Source Announcement [1] похоже Microsoft выложили в открытый код [2] новый NoSQL продукт, прямой конкурент MongoDB. Внутри там FerretDB и PostgreSQL, бенчмарки пока не наблюдаются, что странно. Может быть в ClickBench/JSONBench они появятся через какое-то время. Пока главное достоинство лицензия MIT.
- ai_query function [3] в Databricks есть функция ai_query которую можно использовать прямо в SQL запросе и которая позволяет обрабатывать данные с помощью одной из LLM специальным запросом. Осталось подождать когда такая функция или аналог появятся во всех современных RDBMS
- Human-Computer Input via a Wrist-Based sEMG Wearable [4] исследование Meta
- pg_mooncake. Postgres extension for 1000x faster analytics [5] расширение для колоночных таблиц для PostgreSQL для ускорения аналитики. Внутри, ожидаемо, DuckDB
Ссылки:
[1] https://opensource.microsoft.com/blog/2025/01/23/documentdb-open-source-announcement/
[2] https://github.com/microsoft/documentdb
[3] https://docs.databricks.com/en/sql/language-manual/functions/ai_query.html#examples
[4] https://www.meta.com/blog/surface-emg-wrist-white-paper-reality-labs/
[5] https://github.com/Mooncake-Labs/pg_mooncake
#opensource #rdbms #postgresql #duckdb #datatools
Microsoft Open Source Blog
DocumentDB: Open-Source Announcement - Microsoft Open Source Blog
Learn more on how Microsoft Open Source can help with you with your data stores with the announcement of DocumentDB.
В рубрике интересных инструментов работы с данными Mathesar [1] ещё одна альтернатива Airtable, с открытым кодом под GPL-3.0 и похожий во многом на Teable о котором я ранее писал.
Если вкратце то это UI поверх таблиц в PostgreSQL. Выглядит как удобная штука в жанре онлайн MS Access.
Альтернативы Airtable - это хорошая новость, со многими данными надо работать руками и не всё доверишь облакам.
Ссылки:
[1] https://mathesar.org
#opensource #datatools
Если вкратце то это UI поверх таблиц в PostgreSQL. Выглядит как удобная штука в жанре онлайн MS Access.
Альтернативы Airtable - это хорошая новость, со многими данными надо работать руками и не всё доверишь облакам.
Ссылки:
[1] https://mathesar.org
#opensource #datatools
Вышла новая версия Duckdb 1.2.0 [1] что важно - это существенная оптимизация скорости чтения данных. Пишут что обновили парсер для CSV [2] ускорив его до 15% и общие ускорение на 13% по тестам TPC-H SF100.
Из другого важного - CSV парсер теперь поддерживает кодировки UTF-16 и Latin-1. Это хорошо, но пока недостаточно. Один из актуальных недостатков DuckDB в том что до сих пор он поддерживал только CSV файлы в кодировке UTF-8, а из всех остальных кодировок данные надо было преобразовывать. Почему так лично я до сих пор не знаю, подозреваю что дело в том что команда DuckDB фокусируется на повышении производительности.
Там есть и другие изменения, но, в целом, менее значимые. Основные сценарии использования DuckDB связаны с парсингом CSV и работой с другими дата-файлами и с общей производительностью.
Ссылки:
[1] https://duckdb.org/2025/02/05/announcing-duckdb-120
[2] https://github.com/duckdb/duckdb/pull/14260
#opensource #duckdb #datatools #rdbms
Из другого важного - CSV парсер теперь поддерживает кодировки UTF-16 и Latin-1. Это хорошо, но пока недостаточно. Один из актуальных недостатков DuckDB в том что до сих пор он поддерживал только CSV файлы в кодировке UTF-8, а из всех остальных кодировок данные надо было преобразовывать. Почему так лично я до сих пор не знаю, подозреваю что дело в том что команда DuckDB фокусируется на повышении производительности.
Там есть и другие изменения, но, в целом, менее значимые. Основные сценарии использования DuckDB связаны с парсингом CSV и работой с другими дата-файлами и с общей производительностью.
Ссылки:
[1] https://duckdb.org/2025/02/05/announcing-duckdb-120
[2] https://github.com/duckdb/duckdb/pull/14260
#opensource #duckdb #datatools #rdbms
DuckDB
Announcing DuckDB 1.2.0
The DuckDB team is happy to announce that today we're releasing DuckDB version 1.2.0, codenamed “Histrionicus”.
Возвращаю на голову шляпу дата инженера и продолжаю про разные инструменты.
Одна из рабочих идей у меня сейчас - это инструмент автоматического документирования датасетов/баз данных с приоритетом на "дикие данные" когда файл с данными есть, а документации на него нет. Очень частая ситуация с порталами открытых данных.
Причём потребность в таком инструменте уже очень давно есть, а вот наглядно я видел только облачный сервис CastorDoc который в этом продвинулся и только некоторые дата каталоги. А я сам экспериментировал и создал утилиту metacrafter для идентификации семантических типов данных. Но потребность в автодокументировании шире. Это, как минимум:
1. Автоматизация описания полей набора данных, желательно на нескольких языках: английский, испанский, русский, армянский и тд.
2. Написание описания набора данных так чтобы по датасету или его части можно было бы рассказать о чём он.
3. Описание структуры датасета не просто перечислением полей, а указание типа, описания полей, числа уникальных записей и тд.
4. Автоидентификация и документирование справочников. Почти всегда эти справочники есть и почти всегда их необходимо идентифицировать и описывать.
5. Автоматическая генерация типовых запросов к данным по аналогии с автогенерацией кода для доступа к API, нужны автосгенерированные запросы для доступа к данным.
Это всё самое очевидное, чуть более неочевидное это генерация документации по шаблонам, на разных языках и многое другое.
Самое простое и быстрое решение которое я вижу - это связка DuckDB + LLM модель, простые эксперименты подтверждают что это возможно и несложно. Но если Вы знаете хорошие/эффективные/удобные инструменты документирования датасетов - поделитесь, интересно их посмотреть в работе. Особенно те что с открытым кодом.
#opendata #datadocumentation #opensource #datatools #ideas
Одна из рабочих идей у меня сейчас - это инструмент автоматического документирования датасетов/баз данных с приоритетом на "дикие данные" когда файл с данными есть, а документации на него нет. Очень частая ситуация с порталами открытых данных.
Причём потребность в таком инструменте уже очень давно есть, а вот наглядно я видел только облачный сервис CastorDoc который в этом продвинулся и только некоторые дата каталоги. А я сам экспериментировал и создал утилиту metacrafter для идентификации семантических типов данных. Но потребность в автодокументировании шире. Это, как минимум:
1. Автоматизация описания полей набора данных, желательно на нескольких языках: английский, испанский, русский, армянский и тд.
2. Написание описания набора данных так чтобы по датасету или его части можно было бы рассказать о чём он.
3. Описание структуры датасета не просто перечислением полей, а указание типа, описания полей, числа уникальных записей и тд.
4. Автоидентификация и документирование справочников. Почти всегда эти справочники есть и почти всегда их необходимо идентифицировать и описывать.
5. Автоматическая генерация типовых запросов к данным по аналогии с автогенерацией кода для доступа к API, нужны автосгенерированные запросы для доступа к данным.
Это всё самое очевидное, чуть более неочевидное это генерация документации по шаблонам, на разных языках и многое другое.
Самое простое и быстрое решение которое я вижу - это связка DuckDB + LLM модель, простые эксперименты подтверждают что это возможно и несложно. Но если Вы знаете хорошие/эффективные/удобные инструменты документирования датасетов - поделитесь, интересно их посмотреть в работе. Особенно те что с открытым кодом.
#opendata #datadocumentation #opensource #datatools #ideas
Про эксперименты с автоматизированным документированием датасетов, вот живой пример документирования связки DuckDB + LLM. На вход файл в формате Parquet, можно увидеть его содержимое. На выходе таблица с размеченными колонками. Некоторые LLM дают очень хороший результат с описанием колонок на основе их названия с пониманием контекста и расшифровкой полей в зависимости от контекста который LLM тоже понимает.
Осталось дообогатить таблицу семантическим типом данных и добавить генерацию документации. На вход был файл дампа Единого структурированного справочника-каталога лекарственных препаратов (ЕСКЛП), а на выходе его описание.
Осталось понять сделать ли это отдельным инструментом или встроить в ранее созданные утилиты undatum или metacrafter которые тут пересекаются
#datadocumentation #dataengineering #datatools
Осталось дообогатить таблицу семантическим типом данных и добавить генерацию документации. На вход был файл дампа Единого структурированного справочника-каталога лекарственных препаратов (ЕСКЛП), а на выходе его описание.
Осталось понять сделать ли это отдельным инструментом или встроить в ранее созданные утилиты undatum или metacrafter которые тут пересекаются
#datadocumentation #dataengineering #datatools
Полезные ссылки про данные, технологии и не только:
- Perforator [1] профайлер приложений от Яндекса и с использованием eBPF [2]. Полезно для отладки многих сложных и простых нативных приложений и отдельно расписано как профилировать и оптимизировать серверные приложения на Python. Выглядит как очень добротный open source продукт
- GPT Researcher [3] автономный инструмент для исследований с аккуратной простановкой цитат, использует внешние и локальные источники. Интегрирован с OpenAI
- The Illustrated DeepSeek-R1 [4] подробно о DeepSeek в картинках, позволяет легче ухватить суть продукта
- DataLumos [5] проект Университета Мичигана по архивации государственных и социальных данных, построен на базе OpenICPSR [6], данных не очень много, но они адаптированы под исследовательские задачи
- Data Formulator: Create Rich Visualizations with AI [7] полноценный движок для визуализации данных с помощью ИИ. Выпущен исследователями из Microsoft вместе с научной работой, под лицензией MIT. Выглядит как proof-of-concept, не факт что его можно применять в практических задачах сразу и из коробки, но для экспериментов самое оно. И для идей и вдохновения
- Chat2DB [8] открытый код (community edition) и сервис по управлению базами данных с помощью ИИ. Всё самое вкусное вынесли в коммерческие версии, но посмотреть стоит в любом случае.
Ссылки:
[1] https://perforator.tech
[2] https://ebpf.io
[3] https://github.com/assafelovic/gpt-researcher
[4] https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
[5] https://www.datalumos.org
[6] https://www.openicpsr.org/openicpsr/
[7] https://github.com/microsoft/data-formulator
[8] https://chat2db.ai
#opensource #datatools #opendata #ai
- Perforator [1] профайлер приложений от Яндекса и с использованием eBPF [2]. Полезно для отладки многих сложных и простых нативных приложений и отдельно расписано как профилировать и оптимизировать серверные приложения на Python. Выглядит как очень добротный open source продукт
- GPT Researcher [3] автономный инструмент для исследований с аккуратной простановкой цитат, использует внешние и локальные источники. Интегрирован с OpenAI
- The Illustrated DeepSeek-R1 [4] подробно о DeepSeek в картинках, позволяет легче ухватить суть продукта
- DataLumos [5] проект Университета Мичигана по архивации государственных и социальных данных, построен на базе OpenICPSR [6], данных не очень много, но они адаптированы под исследовательские задачи
- Data Formulator: Create Rich Visualizations with AI [7] полноценный движок для визуализации данных с помощью ИИ. Выпущен исследователями из Microsoft вместе с научной работой, под лицензией MIT. Выглядит как proof-of-concept, не факт что его можно применять в практических задачах сразу и из коробки, но для экспериментов самое оно. И для идей и вдохновения
- Chat2DB [8] открытый код (community edition) и сервис по управлению базами данных с помощью ИИ. Всё самое вкусное вынесли в коммерческие версии, но посмотреть стоит в любом случае.
Ссылки:
[1] https://perforator.tech
[2] https://ebpf.io
[3] https://github.com/assafelovic/gpt-researcher
[4] https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
[5] https://www.datalumos.org
[6] https://www.openicpsr.org/openicpsr/
[7] https://github.com/microsoft/data-formulator
[8] https://chat2db.ai
#opensource #datatools #opendata #ai
ebpf.io
eBPF - Introduction, Tutorials & Community Resources
eBPF is a revolutionary technology that can run sandboxed programs in the Linux kernel without changing kernel source code or loading a kernel module.
Ещё один проект по быстрому созданию приложений на основе датасетов Preswald [1]. С открытым кодом, под лицензией Apache 2.0, вместо low code/no-code пропагандируют принцип Code-First Simplicity (минимальный, но необходимый код), а также декларативное программирование через конфигурацию в toml файлах.
Когда и кому такой инструмент зайдёт? Тем кому нужно быстро визуализировать данные в наглядном виде и предоставлять их в таком виде пользователям. В этом смысле продукт похож чем-то на Observable или Datasette [2] .
На мой взгляд в части демонстрации возможностей инструмента команда как-то сильно недорабатывает, не видно интерактивных демо, а с другой стороны это же просто ещё один инструмент в копилку аналогичных. Возможно, полезный в будущем.
Ссылки:
[1] https://github.com/StructuredLabs/preswald
[2] https://datasette.io
#opensource #datatools
Когда и кому такой инструмент зайдёт? Тем кому нужно быстро визуализировать данные в наглядном виде и предоставлять их в таком виде пользователям. В этом смысле продукт похож чем-то на Observable или Datasette [2] .
На мой взгляд в части демонстрации возможностей инструмента команда как-то сильно недорабатывает, не видно интерактивных демо, а с другой стороны это же просто ещё один инструмент в копилку аналогичных. Возможно, полезный в будущем.
Ссылки:
[1] https://github.com/StructuredLabs/preswald
[2] https://datasette.io
#opensource #datatools
GitHub
GitHub - StructuredLabs/preswald: Preswald is a framework for building and deploying interactive data apps, internal tools, and…
Preswald is a framework for building and deploying interactive data apps, internal tools, and dashboards with Python. With one command, you can launch, share, and deploy locally or in the cloud, tu...
Полезные ссылки про данные, технологии и не только:
- Kreuzberg [1] библиотека для Python по извлечению текста из документов, поддерживает множество форматов, внутри использует Pandoc и Tesseract OCR. Создано как раз для использования в задачах RAG (Retrieval Augmented Generation) с прицелом на локальную обработку данных и минимумом зависимостей. Лицензия MIT
- Validoopsie [2] другая библиотека для Python для валидации данных. Использует библиотеку Narwhals благодаря которой подключается к почти любым видами дата-фреймов. Выглядит полезной альтернативой Great Expectations, лично для меня в валидации данных глобальный нерешённый вопрос в том что тут правильнее, код или декларативное программирования. Иначе говоря, правила проверки должны ли быть отчуждаемыми от языка разработки. Здесь валидация встроена в код, но поверх можно сделать и декларативный движок. Лицензия MIT
- Scripton [3] коммерческое IDE для Python с необычной фичей визуализации данных в реальном времени. Есть только скриншоты, записи экрана и коммерческая версия для macOS. Для тех кто занимается алгоритмической визуализацией может быть удобно, для остальных задач пока нет такой уверенности.
- New horizons for Julia [4] по сути статья о том что язык программирования Julia ещё жив и развивается. Правда медленно, на мой взгляд, но вроде как есть позитивное движение за пределами научных областей. Лично я почти не сталкивался с Julia кроме как на уровне примеров кода, но хорошо если он кому-то нравится и полезен.
- Data-Driven Scrollytelling with Quarto [5] визуализация дата-историй с помощью движка Quarto, итоги конкурса таких визуализаций с большим числом примеров и победителей. Примеры все от команды компании Posit которая этот open-source движок Quarto и разрабатывает. Скажу отдельно что это очень правильно. Если ты делаешь любой движок по визуализации, то просто обязательно надо проводить такие конкурсы.
- The Best Way to Use Text Embeddings Portably is With Parquet and Polars [6] ещё один обзор о том насколько эффективен Parquet в связке с Polars для работы с данными, в данном случае данными карт Magic of the Gathering. Автор тоже задаётся вопросом о том почему Parquet не поддерживается в MS Excel.
- How to Make Superbabies [7] особенно длинный лонгрид о том как генетическими изменениями можно улучшать человека, создавать супер детей или "оптимизированных детей", как ещё пишет автор. Читать и думать об этом надо потому что всё идёт к тому что скоро это станет ещё одной острой социальной и геополитической темой.
Ссылки:
[1] https://github.com/Goldziher/kreuzberg
[2] https://github.com/akmalsoliev/Validoopsie
[3] https://scripton.dev/
[4] https://lwn.net/Articles/1006117/
[5] https://posit.co/blog/closeread-prize-winners/
[6] https://minimaxir.com/2025/02/embeddings-parquet/
[7] https://www.lesswrong.com/posts/DfrSZaf3JC8vJdbZL/how-to-make-superbabies
#opensource #data #datatools #dataviz #genetics #python
- Kreuzberg [1] библиотека для Python по извлечению текста из документов, поддерживает множество форматов, внутри использует Pandoc и Tesseract OCR. Создано как раз для использования в задачах RAG (Retrieval Augmented Generation) с прицелом на локальную обработку данных и минимумом зависимостей. Лицензия MIT
- Validoopsie [2] другая библиотека для Python для валидации данных. Использует библиотеку Narwhals благодаря которой подключается к почти любым видами дата-фреймов. Выглядит полезной альтернативой Great Expectations, лично для меня в валидации данных глобальный нерешённый вопрос в том что тут правильнее, код или декларативное программирования. Иначе говоря, правила проверки должны ли быть отчуждаемыми от языка разработки. Здесь валидация встроена в код, но поверх можно сделать и декларативный движок. Лицензия MIT
- Scripton [3] коммерческое IDE для Python с необычной фичей визуализации данных в реальном времени. Есть только скриншоты, записи экрана и коммерческая версия для macOS. Для тех кто занимается алгоритмической визуализацией может быть удобно, для остальных задач пока нет такой уверенности.
- New horizons for Julia [4] по сути статья о том что язык программирования Julia ещё жив и развивается. Правда медленно, на мой взгляд, но вроде как есть позитивное движение за пределами научных областей. Лично я почти не сталкивался с Julia кроме как на уровне примеров кода, но хорошо если он кому-то нравится и полезен.
- Data-Driven Scrollytelling with Quarto [5] визуализация дата-историй с помощью движка Quarto, итоги конкурса таких визуализаций с большим числом примеров и победителей. Примеры все от команды компании Posit которая этот open-source движок Quarto и разрабатывает. Скажу отдельно что это очень правильно. Если ты делаешь любой движок по визуализации, то просто обязательно надо проводить такие конкурсы.
- The Best Way to Use Text Embeddings Portably is With Parquet and Polars [6] ещё один обзор о том насколько эффективен Parquet в связке с Polars для работы с данными, в данном случае данными карт Magic of the Gathering. Автор тоже задаётся вопросом о том почему Parquet не поддерживается в MS Excel.
- How to Make Superbabies [7] особенно длинный лонгрид о том как генетическими изменениями можно улучшать человека, создавать супер детей или "оптимизированных детей", как ещё пишет автор. Читать и думать об этом надо потому что всё идёт к тому что скоро это станет ещё одной острой социальной и геополитической темой.
Ссылки:
[1] https://github.com/Goldziher/kreuzberg
[2] https://github.com/akmalsoliev/Validoopsie
[3] https://scripton.dev/
[4] https://lwn.net/Articles/1006117/
[5] https://posit.co/blog/closeread-prize-winners/
[6] https://minimaxir.com/2025/02/embeddings-parquet/
[7] https://www.lesswrong.com/posts/DfrSZaf3JC8vJdbZL/how-to-make-superbabies
#opensource #data #datatools #dataviz #genetics #python
Свежий полезный инструмент smallpond [1] от команды DeepSeek AI для тех кто работает с данными большого объёма и с необходимостью их распределения. Под капотом у него DuckDB и 3FS [2], другая разработка от DeepSeek AI в виде распределённой файловой системы с оптимизацией под обучение ИИ.
Ключевое - масштабируемость до петабайтных датасетов. Думаю что полезно для всех датасетов начиная с 1 ТБ и с масштабированием, а для данных объёмом поменьше уже будет избыточно.
Ссылки:
[1] https://github.com/deepseek-ai/smallpond
[2] https://github.com/deepseek-ai/3FS
#opensource #data #datatools
Ключевое - масштабируемость до петабайтных датасетов. Думаю что полезно для всех датасетов начиная с 1 ТБ и с масштабированием, а для данных объёмом поменьше уже будет избыточно.
Ссылки:
[1] https://github.com/deepseek-ai/smallpond
[2] https://github.com/deepseek-ai/3FS
#opensource #data #datatools
GitHub
GitHub - deepseek-ai/smallpond: A lightweight data processing framework built on DuckDB and 3FS.
A lightweight data processing framework built on DuckDB and 3FS. - deepseek-ai/smallpond
Полезный обзор Smallpond [1] свежего движка для обработки больших наборов/массивных потоков данных от Deepseek.
Внутри там DuckDB и автор копается во внутренностях движка объясняя как это работает.
Из интересного - да, это альтернатива Apache Spark или Daft. В общем-то DuckDB приобретает всё большую и большую популярность, встраивается внутрь самых разных инструментов.
Вот теперь ещё и в распределенные базы данных и в распределённую обработку данных.
Ссылки:
[1] https://mehdio.substack.com/p/duckdb-goes-distributed-deepseeks
#data #datatools #deepseek #dataengineering
Внутри там DuckDB и автор копается во внутренностях движка объясняя как это работает.
Из интересного - да, это альтернатива Apache Spark или Daft. В общем-то DuckDB приобретает всё большую и большую популярность, встраивается внутрь самых разных инструментов.
Вот теперь ещё и в распределенные базы данных и в распределённую обработку данных.
Ссылки:
[1] https://mehdio.substack.com/p/duckdb-goes-distributed-deepseeks
#data #datatools #deepseek #dataengineering
Полезные ссылки про данные технологии и не только:
- Graph Databases after 15 Years – Where Are They Headed? [1] автор рассказывает об эволюции графовых баз данных и главный вывод что они стали очень нишевыми и в упадке, кроме очень узких применений.
- Keep Canvases Moving with DuckDB on the Server [2] count.io, сервис онлайн BI внедрили DuckDB для выполнения серверных запросов. Результаты в немедленном сокращении стоимости их выполнения.
- Polars Cloud; the distributed Cloud Architecture to run Polars anywhere [3] команда Polars запустила облачный сервис со своим продуктом, пока в режиме раннего доступа. Обещают масштабирование датафреймов и тд. Главное чтобы их открытый продукт при этом не пострадал или не оказался под какой-нибудь не совсем открытой лицензией.
- What Is a Flat File? [4] обзор текстовых форматов распространения файлов, поверхностный, но полезный для начинающих.
- Mistral OCR [5] переводчик PDF файлов в файлы Markdown от команды создателей Mistral AI. Говорят сами про себя что они лучшие в этом деле, но проверить пока не проверял.
- Aider is AI pair programming in your terminal [6] инструмент для подключения ИИ к написанию кода, умеет подключаться ко множеству моделей включая локальные. В том числе примеры по работе с данными [7]
Ссылки:
[1] https://www.youtube.com/watch?v=X_RFo616M_U
[2] https://count.co/blog/announcing-duckdb-on-the-server
[3] https://pola.rs/posts/polars-cloud-what-we-are-building/
[4] https://evidence.dev/blog/what-is-a-flat-file
[5] https://mistral.ai/news/mistral-ocr
[6] https://aider.chat/
[7] https://aider.chat/examples/census.html
#opensource #ai #data #datatools #rdbms
- Graph Databases after 15 Years – Where Are They Headed? [1] автор рассказывает об эволюции графовых баз данных и главный вывод что они стали очень нишевыми и в упадке, кроме очень узких применений.
- Keep Canvases Moving with DuckDB on the Server [2] count.io, сервис онлайн BI внедрили DuckDB для выполнения серверных запросов. Результаты в немедленном сокращении стоимости их выполнения.
- Polars Cloud; the distributed Cloud Architecture to run Polars anywhere [3] команда Polars запустила облачный сервис со своим продуктом, пока в режиме раннего доступа. Обещают масштабирование датафреймов и тд. Главное чтобы их открытый продукт при этом не пострадал или не оказался под какой-нибудь не совсем открытой лицензией.
- What Is a Flat File? [4] обзор текстовых форматов распространения файлов, поверхностный, но полезный для начинающих.
- Mistral OCR [5] переводчик PDF файлов в файлы Markdown от команды создателей Mistral AI. Говорят сами про себя что они лучшие в этом деле, но проверить пока не проверял.
- Aider is AI pair programming in your terminal [6] инструмент для подключения ИИ к написанию кода, умеет подключаться ко множеству моделей включая локальные. В том числе примеры по работе с данными [7]
Ссылки:
[1] https://www.youtube.com/watch?v=X_RFo616M_U
[2] https://count.co/blog/announcing-duckdb-on-the-server
[3] https://pola.rs/posts/polars-cloud-what-we-are-building/
[4] https://evidence.dev/blog/what-is-a-flat-file
[5] https://mistral.ai/news/mistral-ocr
[6] https://aider.chat/
[7] https://aider.chat/examples/census.html
#opensource #ai #data #datatools #rdbms
YouTube
Graph Databases after 15 Years – Where Are They Headed?
Speaker: Gábor Szárnyas (LDBC)
Event: Data Analytics developer room at FOSDEM 2025
Talk page: https://fosdem.org/2025/schedule/track/analytics/
Slides: https://szarnyasg.org/talks/fosdem-2025-graph-databases-szarnyasg.pdf
Event: Data Analytics developer room at FOSDEM 2025
Talk page: https://fosdem.org/2025/schedule/track/analytics/
Slides: https://szarnyasg.org/talks/fosdem-2025-graph-databases-szarnyasg.pdf
DuckDB выпустили UI интерфейс к базе данных [1] с открытым кодом (встроено в клиентское приложение DuckDB начиная с версии 1.2.11).
Запустить его можно командой duckdb -ui в командной строке и работать словно с тетрадками Jupyter Notebook или инструментами вроде OpenRefine.
Для тех кто сталкивается с задачами вроде Exploratory data analysis (EDA), когда вручную анализируешь данные, инструмент будет бесценен.
Сам UI сделан через расширение DuckDB компанией MotherDuck и поэтому включает авторизацию в их облачный сервис, что, впрочем, не мешает использовать его только локально.
Исходный код на C++ и JS доступен под лицензией MIT [2], при желании можно форкнуть и создать интерфейс с собственными плюшками, командной работе, авторизацией через другие сервисы и тд. А можно доработать его и сделать полноценную замену OpenRefine, к примеру.
Полезная штука по всем параметрам.
Ссылки:
[1] https://duckdb.org/2025/03/12/duckdb-ui
[2] https://github.com/duckdb/duckdb-ui
#opensource #duckdb #ui #data #datatools
Запустить его можно командой duckdb -ui в командной строке и работать словно с тетрадками Jupyter Notebook или инструментами вроде OpenRefine.
Для тех кто сталкивается с задачами вроде Exploratory data analysis (EDA), когда вручную анализируешь данные, инструмент будет бесценен.
Сам UI сделан через расширение DuckDB компанией MotherDuck и поэтому включает авторизацию в их облачный сервис, что, впрочем, не мешает использовать его только локально.
Исходный код на C++ и JS доступен под лицензией MIT [2], при желании можно форкнуть и создать интерфейс с собственными плюшками, командной работе, авторизацией через другие сервисы и тд. А можно доработать его и сделать полноценную замену OpenRefine, к примеру.
Полезная штука по всем параметрам.
Ссылки:
[1] https://duckdb.org/2025/03/12/duckdb-ui
[2] https://github.com/duckdb/duckdb-ui
#opensource #duckdb #ui #data #datatools
SQLRooms [1] свежий инструмент с открытым кодом в жанре "BI для небогатых". Под капотом DuckDB-WASM, снаружи приложение на React. Позволяет строить разные интерактивные дашборды, с графиками и без, с AI и без. Самое главное что небольшими усилиями. Не no-code, но ближе к low-code.
У них симпатичный пример аналитики через LLM [2] и много других примеров. В живых примерах также интересно посмотреть на Flowmap City [3] и Cosmograph [4].
Для участников хакатонов будет особенно полезно, можно быстро сделать красивую визуализацию.
Открытый код и лицензия MIT.
Ссылки:
[1] https://sqlrooms.org
[2] https://sqlrooms-ai.netlify.app/
[3] https://www.flowmap.city/
[4] https://cosmograph.app/
#opensource #duckdb #data #dataviz #datatools
У них симпатичный пример аналитики через LLM [2] и много других примеров. В живых примерах также интересно посмотреть на Flowmap City [3] и Cosmograph [4].
Для участников хакатонов будет особенно полезно, можно быстро сделать красивую визуализацию.
Открытый код и лицензия MIT.
Ссылки:
[1] https://sqlrooms.org
[2] https://sqlrooms-ai.netlify.app/
[3] https://www.flowmap.city/
[4] https://cosmograph.app/
#opensource #duckdb #data #dataviz #datatools
Ещё одна любопытная СУБД для аналитики GreptimeDB [1] на высоких позициях в метриках JSONBench [2] и похоже что хорошо годится для сохранения логов и как JSON хранилище.
Существует в форме открытого кода, коммерческого продукта и облака. Открытый код под лицензией Apache 2.0
Не удалось найти какой движок внутри, похоже какой-то собственный.
Продукт относительно новый, менее 2-х лет, но с венчурным финансированием в 2022 и 2023 годах.
Даже странно что он не так уж популярен.
Ссылки:
[1] https://greptime.com
[2] https://jsonbench.com
#opensource #rdbms #data #datatools
Существует в форме открытого кода, коммерческого продукта и облака. Открытый код под лицензией Apache 2.0
Не удалось найти какой движок внутри, похоже какой-то собственный.
Продукт относительно новый, менее 2-х лет, но с венчурным финансированием в 2022 и 2023 годах.
Даже странно что он не так уж популярен.
Ссылки:
[1] https://greptime.com
[2] https://jsonbench.com
#opensource #rdbms #data #datatools