Китайская компания HKVision выиграла тендер в Китае на систему "Умный кампус" умеющую отслеживать что представители национальных меньшинств соблюдают пост в Рамадан [1].
Даже не знаю как это прокомментировать. Подозреваю лишь что Китаем такие внедрения не ограничатся.
Только в Китае следят за мусульманами, а за кем будут следить в России ? Правильно, за социальной жизнью студентов ЛГБТ. Научат камеры распознавать то что девушки или юноши ходят по коридорам и двору за ручку и сразу будут камеры стучать в профильный Департамент социального позора Министерства раздувания национального достояния.
Думаете фантастический сценарий?
Ссылки:
[1] https://ipvm.com/reports/hikvision-fasting
#privacy #china #algorithms #ai
Даже не знаю как это прокомментировать. Подозреваю лишь что Китаем такие внедрения не ограничатся.
Только в Китае следят за мусульманами, а за кем будут следить в России ? Правильно, за социальной жизнью студентов ЛГБТ. Научат камеры распознавать то что девушки или юноши ходят по коридорам и двору за ручку и сразу будут камеры стучать в профильный Департамент социального позора Министерства раздувания национального достояния.
Думаете фантастический сценарий?
Ссылки:
[1] https://ipvm.com/reports/hikvision-fasting
#privacy #china #algorithms #ai
Про интересные данные в геополитике, исследование Belt and Road Reboot: Beijing’s Bid to De-Risk Its Global Infrastructure Initiative [1] с результатами анализа чуть менее 21 тысячи проектов профинансированных и поддержанных Китаем за 2000-2021 годы в 165 развивающихся странах и странах со средними доходами. К этому же отчёту набор данных AidData's Global Chinese Development Finance Dataset, Version 3.0 [2] со всеми этими данными.
Данные они распространяют в Excel, и они по формату ближе к академическим датасетам, разве что DOI нехватает.
Сами данные более чем интересные, можно найти проекты которые Китай реализует практически в любой стране мира, в Армении, Уругвае, России, Иране и так далее.
Ссылки:
[1] https://www.aiddata.org/publications/belt-and-road-reboot
[2] https://www.aiddata.org/data/aiddatas-global-chinese-development-finance-dataset-version-3-0
#opendata #international #china #readings #datasets
Данные они распространяют в Excel, и они по формату ближе к академическим датасетам, разве что DOI нехватает.
Сами данные более чем интересные, можно найти проекты которые Китай реализует практически в любой стране мира, в Армении, Уругвае, России, Иране и так далее.
Ссылки:
[1] https://www.aiddata.org/publications/belt-and-road-reboot
[2] https://www.aiddata.org/data/aiddatas-global-chinese-development-finance-dataset-version-3-0
#opendata #international #china #readings #datasets
Я об этом мало рассказывал, но в течение многих лет работа с данными, особенно их систематизация были моими хобби, а не работой. Я много лет занимался вначале разработкой ПО, потом архитектурой и управлением проектами, а параллельно сводил какие-нибудь таблицы для себя потому что "очень хотелось сводить таблицы" (с). Одно из таких моих увлечений ещё давно была систематизация международных организаций, институтов развития, банков развития и другие систематизации объединяющие группы стран и международные взаимоотношения.
У меня и сейчас есть их реестр, я его давно ещё вёл в Excel, потом перенес в Airtable и до сих пор регулярно им пользуюсь, например, когда ищу данные по тематикам, часто они есть на сайтах межгосударственных организаций. Там база межгосударственных объединений, блоков стран, таможенных и экономических союзов и банков развития. Такое полезное оказалось хобби, сильно помогшее мне в будущих задачах по data discovery.
А недавно я обнаружил что в Пекинском университете ведут похожую базу данных Public Development Banks and Development Financing Institutions Database [1], но только по банкам развития.
Любопытный проект, пересекающийся с моей базой где-то на 50-60%, но с визуализацией наглядно.
И да, их данные общедоступны, но для выгрузки требуют регистрацию [2].
Ссылки:
[1] http://www.dfidatabase.pku.edu.cn/index.htm
[2] http://www.dfidatabase.pku.edu.cn/DataDownloading/index.htm
#opendata #data #finances #china #banking
У меня и сейчас есть их реестр, я его давно ещё вёл в Excel, потом перенес в Airtable и до сих пор регулярно им пользуюсь, например, когда ищу данные по тематикам, часто они есть на сайтах межгосударственных организаций. Там база межгосударственных объединений, блоков стран, таможенных и экономических союзов и банков развития. Такое полезное оказалось хобби, сильно помогшее мне в будущих задачах по data discovery.
А недавно я обнаружил что в Пекинском университете ведут похожую базу данных Public Development Banks and Development Financing Institutions Database [1], но только по банкам развития.
Любопытный проект, пересекающийся с моей базой где-то на 50-60%, но с визуализацией наглядно.
И да, их данные общедоступны, но для выгрузки требуют регистрацию [2].
Ссылки:
[1] http://www.dfidatabase.pku.edu.cn/index.htm
[2] http://www.dfidatabase.pku.edu.cn/DataDownloading/index.htm
#opendata #data #finances #china #banking
Немногие за пределами Китая знают о масштабах публикации там научных данных. При этом данных там много и, помимо таких проектов как SciDB и Findata существуют десятки крупных научных репозиториев с данными.
В большинстве из них в их основе лежит ПО InstDB [1] установленное в 72 научных учреждениях и служащее для раскрытия научных данных в режимах: открытости, доступа по авторизации и доступа по запросу.
Например, на InstDB работает центр научных данных академии наук Китая [2], репозиторий Института физики [3] и многих других научных организаций.
В Китае научных данных многократно больше чем на государственных порталах данных, которые тоже есть и которые, тоже, работают на типовом ПО. Но типовом местном ПО, разработанном китайскими компаниями. Это большая и важная страновая особенность по доступности данных. Ещё одна особенность в том что про китайские открытые данные почти не пишут в обзорах OKF или State of data. Это делает эти данные почти невидимыми для тех кто не знает о том как всё устроено.
А типовое ПО в виде InstDB позволило китайской академии наук создать поисковик Findata о котором я ранее писал.
Ссылки:
[1] https://market.csdb.cn/InstDB
[2] http://instdb.casdc.cn
[3] http://instdb.iphy.ac.cn
#opendata #china #datacatalogs #datasets
В большинстве из них в их основе лежит ПО InstDB [1] установленное в 72 научных учреждениях и служащее для раскрытия научных данных в режимах: открытости, доступа по авторизации и доступа по запросу.
Например, на InstDB работает центр научных данных академии наук Китая [2], репозиторий Института физики [3] и многих других научных организаций.
В Китае научных данных многократно больше чем на государственных порталах данных, которые тоже есть и которые, тоже, работают на типовом ПО. Но типовом местном ПО, разработанном китайскими компаниями. Это большая и важная страновая особенность по доступности данных. Ещё одна особенность в том что про китайские открытые данные почти не пишут в обзорах OKF или State of data. Это делает эти данные почти невидимыми для тех кто не знает о том как всё устроено.
А типовое ПО в виде InstDB позволило китайской академии наук создать поисковик Findata о котором я ранее писал.
Ссылки:
[1] https://market.csdb.cn/InstDB
[2] http://instdb.casdc.cn
[3] http://instdb.iphy.ac.cn
#opendata #china #datacatalogs #datasets
К вопросу о качестве индексов в больших агрегаторов данных, приведу в пример SciDB [1] китайский агрегатор и портал для раскрытия научных данных. Всего там 8,7 миллионов объектов, можно было бы называть их датасетами, но датасеты там далеко не всё.
Когда смотришь подробнее на статистику то оказывается что в фильтрах гораздо меньше данных. В фильтре по годам 3.5 миллионов записей, в фильтре по типу около 5 миллионов записей из которых 4.25 - это "Other data",а по фильтру тематик вообще размечено только 50 тысяч наборов данных.
И тут просто таки начинаешь задаваться вопросом, а где же всё остальное? Неужели где-то врут?
Но, скорее всего не врут, а не договаривают. Общий индекс может быть большим, но данные там не родные, а импортированные из DataCite или Zenodo и других ресурсов. Они почти наверняка не размечены и не сматчены с тематиками SciDB и всем остальным. Похожая ситуация и в базе поиска Datacite и в OpenAIRE когда большая часть фильтров не фильтрует потому что нужно много работать над этим. Качество метаданных и качество поисковых индексов очень невысокое. Увы( Но это можно рассматривать не как проблему, а как вызов.
В Dateno тематическая классификация датасетов сейчас решается через классифицированные источники и через авторазметку по простым правилам, а в планах добавить разметку по расширенному классификатору и это даст возможность находить самые неожиданные данные.
Ссылки:
[1] https://www.scidb.cn
#opendata #datasets #datasearch #china
Когда смотришь подробнее на статистику то оказывается что в фильтрах гораздо меньше данных. В фильтре по годам 3.5 миллионов записей, в фильтре по типу около 5 миллионов записей из которых 4.25 - это "Other data",а по фильтру тематик вообще размечено только 50 тысяч наборов данных.
И тут просто таки начинаешь задаваться вопросом, а где же всё остальное? Неужели где-то врут?
Но, скорее всего не врут, а не договаривают. Общий индекс может быть большим, но данные там не родные, а импортированные из DataCite или Zenodo и других ресурсов. Они почти наверняка не размечены и не сматчены с тематиками SciDB и всем остальным. Похожая ситуация и в базе поиска Datacite и в OpenAIRE когда большая часть фильтров не фильтрует потому что нужно много работать над этим. Качество метаданных и качество поисковых индексов очень невысокое. Увы( Но это можно рассматривать не как проблему, а как вызов.
В Dateno тематическая классификация датасетов сейчас решается через классифицированные источники и через авторазметку по простым правилам, а в планах добавить разметку по расширенному классификатору и это даст возможность находить самые неожиданные данные.
Ссылки:
[1] https://www.scidb.cn
#opendata #datasets #datasearch #china
В рубрике как это устроено у них японский национальный репозиторий результатов научных работ IRDB [1], включает 4.1 миллиона ресурсов, большая часть которых это научные статьи, журналы, публикации после конференций и так далее, а также боле чем 124 тысячи наборов исследовательских данных. Чем то IRDB схож с проектами OpenAIRE и SciDB, хотя и сделан весьма консервативнее.
В его основе харвестинг метаданных из более чем 700 научных репозиториев [2] в которых реализовано раскрытие метаданных по стандарту JPCOAR [3] через интерфейсы OAI-PMH. Сам репозиторий IDRB также поддерживает доступ через OAI-PMH [4] и с ним можно взаимодействовать программным образом.
Простота харвестинга во многом обеспечена тем что значительная часть репозиториев - это репозитории на базе open-source ПО Weko3 которое является доработанной версией репозитория для научных публикаций Invenio 3 и который и обеспечивает предоставление метаданных через OAI и, также, предоставляет иные, API упрощающие сбор данных. Weko3 был разработан Национальным институтом информатики Японии, той же организацией что управляет IRDB
У IRDB множество недостатков тоже есть:
- нет bulk download, нельзя скачать базу целиком
- нет документированного API, даже интерфейс OAI не упомянут на сайте, не говоря уже о том что он устарел для большей части задач
- схемы данных описания датасетов весьма консервативны. Нет даже разметки schema.org, не говоря уже о DCAT.
В целом проект выглядит проработанным, живым, но замершим в развитии.
Кстати, китайский проект SciDb сделан очень похожим образом. Также есть ПО институциональных репозиториев созданный структурой Китайской академии наук и централизованный архив/поиск индексирующий все эти репозитории.
Возвращаясь к IRDB, например, для Dateno проще автоматизировать сбор метаданных из японских репозиториев напрямую чем индексировать IRDB именно из-за отсутствия другого API кроме OAI.
Ссылки:
[1] https://irdb.nii.ac.jp
[2] https://irdb.nii.ac.jp/en/repositorylist
[3] https://schema.irdb.nii.ac.jp/en
[4] https://irdb.nii.ac.jp/oai
#opendata #data #openaccess #japan #china #openscience
В его основе харвестинг метаданных из более чем 700 научных репозиториев [2] в которых реализовано раскрытие метаданных по стандарту JPCOAR [3] через интерфейсы OAI-PMH. Сам репозиторий IDRB также поддерживает доступ через OAI-PMH [4] и с ним можно взаимодействовать программным образом.
Простота харвестинга во многом обеспечена тем что значительная часть репозиториев - это репозитории на базе open-source ПО Weko3 которое является доработанной версией репозитория для научных публикаций Invenio 3 и который и обеспечивает предоставление метаданных через OAI и, также, предоставляет иные, API упрощающие сбор данных. Weko3 был разработан Национальным институтом информатики Японии, той же организацией что управляет IRDB
У IRDB множество недостатков тоже есть:
- нет bulk download, нельзя скачать базу целиком
- нет документированного API, даже интерфейс OAI не упомянут на сайте, не говоря уже о том что он устарел для большей части задач
- схемы данных описания датасетов весьма консервативны. Нет даже разметки schema.org, не говоря уже о DCAT.
В целом проект выглядит проработанным, живым, но замершим в развитии.
Кстати, китайский проект SciDb сделан очень похожим образом. Также есть ПО институциональных репозиториев созданный структурой Китайской академии наук и централизованный архив/поиск индексирующий все эти репозитории.
Возвращаясь к IRDB, например, для Dateno проще автоматизировать сбор метаданных из японских репозиториев напрямую чем индексировать IRDB именно из-за отсутствия другого API кроме OAI.
Ссылки:
[1] https://irdb.nii.ac.jp
[2] https://irdb.nii.ac.jp/en/repositorylist
[3] https://schema.irdb.nii.ac.jp/en
[4] https://irdb.nii.ac.jp/oai
#opendata #data #openaccess #japan #china #openscience
Я совсем пропустил публикацию обновлённого China Open Data Index [1] в январе 2024 года, а там интересные цифры в виде 345 853 наборов данных доступных на региональных государственных порталах открытых данных Китая.
А также всего с 2017 года появилось 226 городских порталов открытых данных (60% от всех городов) и 22 региональных портала из 27 провинций.
Точный объём данных на городских порталах неизвестен, но весьма велик почти наверняка.
Много ли это? Да много. Например, в США на портале data.gov опубликовано порядка 300+ тысяч наборов данных из которых от 60 до 80% - это открытые научные данные
А в Китае очень много научных данных доступно через scidb.cn и findata.cn.
Ссылки:
[1] http://ifopendata.fudan.edu.cn
#opendata #china #data
А также всего с 2017 года появилось 226 городских порталов открытых данных (60% от всех городов) и 22 региональных портала из 27 провинций.
Точный объём данных на городских порталах неизвестен, но весьма велик почти наверняка.
Много ли это? Да много. Например, в США на портале data.gov опубликовано порядка 300+ тысяч наборов данных из которых от 60 до 80% - это открытые научные данные
А в Китае очень много научных данных доступно через scidb.cn и findata.cn.
Ссылки:
[1] http://ifopendata.fudan.edu.cn
#opendata #china #data
Один из крупнейших проектов с большими научными данными - это Китайский национальный центр биоинформации через сайт которого доступно более 53 Петабайт геномных данных [1]. Причём в августе 2021 года их было всего 5 Петабайт и сейчас можно наблюдать 10-кратный рост за 3 года. Такими темпами к концу 2025 года будут все 100 Пб.
Внутри центра много разных баз данных и архивов, от нескольких терабайт, до десятка петабайт. Все данные доступны в форматах специфичных в для биоинформатики и геномных исследований.
Часть этих данных полностью открытые и их можно сразу скачать через FTP или HTTP интерфейсы, часть требуют процедуры получения доступа через профильный комитет доступа к данным Data Access Committee(DAC) [2].
Ссылки:
[1] https://www.cncb.ac.cn/services
[2] https://ngdc.cncb.ac.cn/gsa-human/browse/HRA002875
#opendata #china #data #genomics #bigdata
Внутри центра много разных баз данных и архивов, от нескольких терабайт, до десятка петабайт. Все данные доступны в форматах специфичных в для биоинформатики и геномных исследований.
Часть этих данных полностью открытые и их можно сразу скачать через FTP или HTTP интерфейсы, часть требуют процедуры получения доступа через профильный комитет доступа к данным Data Access Committee(DAC) [2].
Ссылки:
[1] https://www.cncb.ac.cn/services
[2] https://ngdc.cncb.ac.cn/gsa-human/browse/HRA002875
#opendata #china #data #genomics #bigdata
Кстати, помните я расхваливал китайский портал/агрегатор научных данных SciDb [1].
Так вот его можно не только хвалить. После некоторого исследования его содержания он на 100% соответствует подходу "главное не быть, а казаться". Из заявленных 10 миллионов наборов данных лишь 18 тысяч имеют присоединённые файлы и загружены через сам портал, ещё 754 тысячи собраны из нескольких больших открытых порталов научных данных таких как Zenodo и PANGAEA, а всё остальное - это просто слепок поискового индекса по данным DataCite, сильно замусоренного и, объективно, без значимых метаданных, да и не факт что ссылки на сами данные.
С одной стороны, как обидно, так мало данных. С другой стороны, очередное подтверждение приоритетов индексирования и то что из SciDB можно собирать только те данные что туда были загружены. Другой вопрос что отфильтровать их непросто.
В любом случае удивительно то что вместо индексации тех же геномных данных китайцы пошли по этому пути.
Ссылки:
[1] https://www.scidb.cn
#opendata #china #datasets #datacatalogs
Так вот его можно не только хвалить. После некоторого исследования его содержания он на 100% соответствует подходу "главное не быть, а казаться". Из заявленных 10 миллионов наборов данных лишь 18 тысяч имеют присоединённые файлы и загружены через сам портал, ещё 754 тысячи собраны из нескольких больших открытых порталов научных данных таких как Zenodo и PANGAEA, а всё остальное - это просто слепок поискового индекса по данным DataCite, сильно замусоренного и, объективно, без значимых метаданных, да и не факт что ссылки на сами данные.
С одной стороны, как обидно, так мало данных. С другой стороны, очередное подтверждение приоритетов индексирования и то что из SciDB можно собирать только те данные что туда были загружены. Другой вопрос что отфильтровать их непросто.
В любом случае удивительно то что вместо индексации тех же геномных данных китайцы пошли по этому пути.
Ссылки:
[1] https://www.scidb.cn
#opendata #china #datasets #datacatalogs
Полезное чтение про данные, технологии и не только:
- Unlocking AI for All: The Case for Public Data Banks [1] о том что для развития экосистемы ИИ нужны public AI data banks (PAIDs), каталоги данных доступных для исследователей и среднего/малого бизнеса. Мысли здравые и даже примеры близкие, но автор явно далёк от некоторых областей работы с данными иначе знал бы более релевантные примеры. В любом случае идея актуальная ещё надолго.
- China: Autocracy 2.0 [2] структуризация экономической и политической политики Китая с оглядкой на его автократическую модель. Что-то кажется очевидным, что-то не так очевидным, но всё вместе неплохо описано.
- Climate and Health Outcomes Research Data Systems (CHORDS) [3] проект и каталог данных о влиянии окружающей среды на здоровье человека. Каталог данных скорее выглядит как агрегатор ссылок на академические репозитории, но всё неплохо организовано. Подробный рассказ про инициативу [4] и, что любопытно, внутри него ранее не встречавшийся мне продукт каталога данных Gen3 Data Commons [5]
- Need for Co-creating Urban Data Collaborative [6] про инициативы по открытости данных в Индии на уровне городов и вовлечение граждан в создание данных. Много интересного о том что там происходит, из любопытного, у них есть DMAF (Data Maturity Assessment Framework) [7] для оценки зрелости работы с данными в индийских городах и результаты оценки и дашборд по 100 городам [8]
- Report – Improving Governance Outcomes Through AI Documentation: Bridging Theory and Practice [9] доклад о необходимости и влиянии документированности AI моделей на их управляемость
Ссылки:
[1] https://www.lawfaremedia.org/article/unlocking-ai-for-all--the-case-for-public-data-banks
[2] https://www.nber.org/papers/w32993
[3] https://niehs.github.io/chords_landing/index.html
[4] https://factor.niehs.nih.gov/2024/8/science-highlights/climate-health-data
[5] https://gen3.org/products/data-commons/
[6] https://medium.com/civicdatalab/need-for-co-creating-urban-data-collaboratives-1ab9bc2c0776
[7] https://dmaf.mohua.gov.in/
[8] https://amplifi.mohua.gov.in/dmaf-dashboard
[9] https://cdt.org/insights/report-improving-governance-outcomes-through-ai-documentation-bridging-theory-and-practice/
#data #opendata #ai #india #china #healthcare #openaccess #datapolicy
- Unlocking AI for All: The Case for Public Data Banks [1] о том что для развития экосистемы ИИ нужны public AI data banks (PAIDs), каталоги данных доступных для исследователей и среднего/малого бизнеса. Мысли здравые и даже примеры близкие, но автор явно далёк от некоторых областей работы с данными иначе знал бы более релевантные примеры. В любом случае идея актуальная ещё надолго.
- China: Autocracy 2.0 [2] структуризация экономической и политической политики Китая с оглядкой на его автократическую модель. Что-то кажется очевидным, что-то не так очевидным, но всё вместе неплохо описано.
- Climate and Health Outcomes Research Data Systems (CHORDS) [3] проект и каталог данных о влиянии окружающей среды на здоровье человека. Каталог данных скорее выглядит как агрегатор ссылок на академические репозитории, но всё неплохо организовано. Подробный рассказ про инициативу [4] и, что любопытно, внутри него ранее не встречавшийся мне продукт каталога данных Gen3 Data Commons [5]
- Need for Co-creating Urban Data Collaborative [6] про инициативы по открытости данных в Индии на уровне городов и вовлечение граждан в создание данных. Много интересного о том что там происходит, из любопытного, у них есть DMAF (Data Maturity Assessment Framework) [7] для оценки зрелости работы с данными в индийских городах и результаты оценки и дашборд по 100 городам [8]
- Report – Improving Governance Outcomes Through AI Documentation: Bridging Theory and Practice [9] доклад о необходимости и влиянии документированности AI моделей на их управляемость
Ссылки:
[1] https://www.lawfaremedia.org/article/unlocking-ai-for-all--the-case-for-public-data-banks
[2] https://www.nber.org/papers/w32993
[3] https://niehs.github.io/chords_landing/index.html
[4] https://factor.niehs.nih.gov/2024/8/science-highlights/climate-health-data
[5] https://gen3.org/products/data-commons/
[6] https://medium.com/civicdatalab/need-for-co-creating-urban-data-collaboratives-1ab9bc2c0776
[7] https://dmaf.mohua.gov.in/
[8] https://amplifi.mohua.gov.in/dmaf-dashboard
[9] https://cdt.org/insights/report-improving-governance-outcomes-through-ai-documentation-bridging-theory-and-practice/
#data #opendata #ai #india #china #healthcare #openaccess #datapolicy
Default
Unlocking AI for All: The Case for Public Data Banks
Public AI data banks could democratize access to data, reducing Big Tech’s dominance and fostering innovation in AI.
В рубрике как это устроено у них проект AidData [1] база данных, каталог данных и аналитические сервисы посвящённые международной помощи. Проект в который его создатели много лет в виде отдельных, но связанных баз данных собирали информацию о том как развитые (и не очень) страны помогали развивающимся.
В какой-то момент в проекте сильный акцент появился на китайской международной помощи и несколько баз данных посвящены ей, причём многие данные о китайских проектах извлекаются из разрозненных PDF отчётов вручную. Например, любопытный набор данных по экспорт ИИ из Китая [2]
Их, в том числе, поддерживали USAID и Госдепартамент США в прошлые годы, но это тот случай когда скорее администрация Трампа или поможет или не будет мешать проекту, поскольку он явно всё больше ориентируется на отслеживание активностей Китая.
Данные не самые большие, каталог данных не самый технически продвинутый, но сами данные интересны, особенно тем кто интересуется геополитикой в экономических её проявлениях.
Ссылки:
[1] https://www.aiddata.org
[2] https://www.aiddata.org/data/chinas-ai-exports-database-caied
#opendata #datasets #datacatalogs #china
В какой-то момент в проекте сильный акцент появился на китайской международной помощи и несколько баз данных посвящены ей, причём многие данные о китайских проектах извлекаются из разрозненных PDF отчётов вручную. Например, любопытный набор данных по экспорт ИИ из Китая [2]
Их, в том числе, поддерживали USAID и Госдепартамент США в прошлые годы, но это тот случай когда скорее администрация Трампа или поможет или не будет мешать проекту, поскольку он явно всё больше ориентируется на отслеживание активностей Китая.
Данные не самые большие, каталог данных не самый технически продвинутый, но сами данные интересны, особенно тем кто интересуется геополитикой в экономических её проявлениях.
Ссылки:
[1] https://www.aiddata.org
[2] https://www.aiddata.org/data/chinas-ai-exports-database-caied
#opendata #datasets #datacatalogs #china