Я тут задумался над тем какие практические инструменты с LLM внутри я использую в работе и для чего хотелось бы использовать ещё. Хотелось бы, для многого конечно, но не всё ещё существует
Самое очевидное это переписывание текстов с помощью DeepL Write. Очень удобно для переписке и публикаций не на родном языке, поскольку сильно выправляет текст. Похоже на Grammarly, но ощущение что итоговый текст гораздо лучше и поддерживается не только английский язык. Главный минус пока только в том что поддерживаются только 8 языков. В любом случае очень удобно для публикации в англоязычных и других соцсетях
Совсем не такое очевидное, но важное для меня это сбор информации о дата каталогах. Это довольно специфическая лично моя задача по обновлению реестра каталогов данных в Dateno. Этот процесс на текущей стадии ручной, поскольку автоматизированный ранее собранных каталогов уже выполнен и оставшаяся часть работы - это ручная разметка. В частности вручную проставляется инфа по каталогу данных:
- название
- описание
- название владельца
- тип владельца (гос-во, муниципалитет, ученые и тд.)
- тематики
- теги
А также простановка геопривязки для тех ресурсов у которых её нет или если выясняется что они уровня регионов.
Это много ручной работы напрямую влияющей на качество данных в Dateno, поскольку тип владельца, геопривязки и тематики идут в фасеты поиска, а остальные поля отображаются в карточках датасетов.
Оказалось что Perplexity отлично выдаёт ответы на такие вопросы как:
- Who owns <> website ?
- About what this website is <> ?
А также, что очень практически удобно, Perplexity умеет точно отвечать на такие вопросы как "What is ISO3166-2 code of the Magallanes and Chilean Antarctica ?" и выдавать точный код.
Скорее всего Perplexity можно заменить на другую модель, но и текущие результаты вполне полезны.
Сейчас в Dateno около 18% (3.4 миллиона) наборов данных не имеют пометки типа владельца данных, а 2.4 миллиона не имеют привязки к стране/территории.
Это, в любом случае лучше чем у Google Dataset Search, но всё ещё недостаточно хорошо.
Применение LLM в повышении качества метаданных кажется очень реалистичной задачей.
#ai #thoughts #dateno #datasets #data
Самое очевидное это переписывание текстов с помощью DeepL Write. Очень удобно для переписке и публикаций не на родном языке, поскольку сильно выправляет текст. Похоже на Grammarly, но ощущение что итоговый текст гораздо лучше и поддерживается не только английский язык. Главный минус пока только в том что поддерживаются только 8 языков. В любом случае очень удобно для публикации в англоязычных и других соцсетях
Совсем не такое очевидное, но важное для меня это сбор информации о дата каталогах. Это довольно специфическая лично моя задача по обновлению реестра каталогов данных в Dateno. Этот процесс на текущей стадии ручной, поскольку автоматизированный ранее собранных каталогов уже выполнен и оставшаяся часть работы - это ручная разметка. В частности вручную проставляется инфа по каталогу данных:
- название
- описание
- название владельца
- тип владельца (гос-во, муниципалитет, ученые и тд.)
- тематики
- теги
А также простановка геопривязки для тех ресурсов у которых её нет или если выясняется что они уровня регионов.
Это много ручной работы напрямую влияющей на качество данных в Dateno, поскольку тип владельца, геопривязки и тематики идут в фасеты поиска, а остальные поля отображаются в карточках датасетов.
Оказалось что Perplexity отлично выдаёт ответы на такие вопросы как:
- Who owns <> website ?
- About what this website is <> ?
А также, что очень практически удобно, Perplexity умеет точно отвечать на такие вопросы как "What is ISO3166-2 code of the Magallanes and Chilean Antarctica ?" и выдавать точный код.
Скорее всего Perplexity можно заменить на другую модель, но и текущие результаты вполне полезны.
Сейчас в Dateno около 18% (3.4 миллиона) наборов данных не имеют пометки типа владельца данных, а 2.4 миллиона не имеют привязки к стране/территории.
Это, в любом случае лучше чем у Google Dataset Search, но всё ещё недостаточно хорошо.
Применение LLM в повышении качества метаданных кажется очень реалистичной задачей.
#ai #thoughts #dateno #datasets #data
Про плохие практики публикации открытых данных, вот пример совершенно неожиданный, дата хаб штата Массачусетс (США) [1].
С виду он неплохо выглядит, по крайней мере внешне, но, это не должно обманывать, у него есть несколько системных недостатков:
1. Это не каталог данных, а список внешних ресурсов. Практически все ссылки ведут на другие сайты принадлежащие штату или федеральной власти, вроде сайта переписи census.gov
2. Наборов данных там всего 384 что очень мало, потому что на одном только портале города Кембридж (входит в штат) есть 432 набора данных [2]
3. В поиске нет возможности фильтровать ни по одному из фильтров кроме темы
4. Нет API, нет экспорта метаданных,
5. Часть ссылок вообще ведут на страницы сервиса Tableau с дашбордами откуда данные не скачать без авторизации [3]
В общем-то для США это довольно редкий пример, потому как там почти все порталы открытых данных сделаны, либо на движке Socrata, либо CKAN, либо ArcGIS Hub.
При этом у штата есть вполне приличный по размеру и содержанию каталог геоданных [4] с 2439 наборами данных, включая исторические.
Впрочем я уже писал о том что в США важные особенности развития открытых данных - это высокая их фрагментированность, рассеяность по множеству ресурсов и в том что геоданных и научных данных значительно больше всех остальных.
Ссылки:
[1] https://data.mass.gov
[2] https://data.cambridgema.gov/browse
[3] https://public.tableau.com/app/profile/drap4687/viz/MassachusettsTrialCourtChargesDashboard/AllCharges
[4] https://gis.data.mass.gov/search
#opendata #datasets #data #usa #geodata
С виду он неплохо выглядит, по крайней мере внешне, но, это не должно обманывать, у него есть несколько системных недостатков:
1. Это не каталог данных, а список внешних ресурсов. Практически все ссылки ведут на другие сайты принадлежащие штату или федеральной власти, вроде сайта переписи census.gov
2. Наборов данных там всего 384 что очень мало, потому что на одном только портале города Кембридж (входит в штат) есть 432 набора данных [2]
3. В поиске нет возможности фильтровать ни по одному из фильтров кроме темы
4. Нет API, нет экспорта метаданных,
5. Часть ссылок вообще ведут на страницы сервиса Tableau с дашбордами откуда данные не скачать без авторизации [3]
В общем-то для США это довольно редкий пример, потому как там почти все порталы открытых данных сделаны, либо на движке Socrata, либо CKAN, либо ArcGIS Hub.
При этом у штата есть вполне приличный по размеру и содержанию каталог геоданных [4] с 2439 наборами данных, включая исторические.
Впрочем я уже писал о том что в США важные особенности развития открытых данных - это высокая их фрагментированность, рассеяность по множеству ресурсов и в том что геоданных и научных данных значительно больше всех остальных.
Ссылки:
[1] https://data.mass.gov
[2] https://data.cambridgema.gov/browse
[3] https://public.tableau.com/app/profile/drap4687/viz/MassachusettsTrialCourtChargesDashboard/AllCharges
[4] https://gis.data.mass.gov/search
#opendata #datasets #data #usa #geodata
В мире очень много данных о которых мало кто знает (с)
Большой срез научных данных - это данные о погоде, климате и наблюдениях за морями и океанами. Всё это является частью метеорологии и климатологии наук которые изначально про работу с большими данными, поскольку данные метеонаблюдений, спутниковых снимков и тд. - это реально большие объёмы данных поступающих в реальном времени.
Так вот большая часть этих данных в мире собирается с помощью открытого кода и публикуется в форме датасетов в каталогах данных на базе движка ERDDAP [1]. Это довольно старый программный продукт, разработанный Национальным управлением океанических и атмосферных исследований и используемый как каталог научных данных с возможностью работать с данными через API, в виде графов, таблиц и с первичными данными в формате NetCDF.
В общей сложности в мире более 100 инсталляций ERDDAP, большая их часть находится в США, но есть и в Австралии, Японии, странах ЕС и ряде других. В совокупности это более 100 тысяч наборов данных, а реальный объём данных сложно измерить, но можно исходить из того что там минимум сотни терабайт, а скорее больше.
В реестре Dateno тоже есть записи с серверами ERDDAP [2] и пока их там чуть менее 70, по большинству из них ещё не собраны нужные метаданные и сами данные ещё не индексируются.
В ближайшие недели/месяцы мы, конечно, индексировать их начнём, поскольку они неплохо стандартизированы и пригодны для индексации. Но это та область которая как бы существует сама по себе, узкая нишевая научная инфраструктура в которой, в принципе, большинство исследователей и так знают где что искать.
Поэтому для Dateno эти каталоги данных пока не первоприоритетны, но они несомненно интересны для понимания того как устроены данных в отдельных научных дисциплинах. А что то и так индексируется с существующих дата каталогов где есть ссылки на данные из ERDDAP [3]
Ссылки:
[1] https://github.com/ERDDAP
[2] https://dateno.io/registry/catalog/cdi00004521/
[3] https://dateno.io/search?query=ERDDAP
#opendata #dataportals #datasets #oceans #climatology
Большой срез научных данных - это данные о погоде, климате и наблюдениях за морями и океанами. Всё это является частью метеорологии и климатологии наук которые изначально про работу с большими данными, поскольку данные метеонаблюдений, спутниковых снимков и тд. - это реально большие объёмы данных поступающих в реальном времени.
Так вот большая часть этих данных в мире собирается с помощью открытого кода и публикуется в форме датасетов в каталогах данных на базе движка ERDDAP [1]. Это довольно старый программный продукт, разработанный Национальным управлением океанических и атмосферных исследований и используемый как каталог научных данных с возможностью работать с данными через API, в виде графов, таблиц и с первичными данными в формате NetCDF.
В общей сложности в мире более 100 инсталляций ERDDAP, большая их часть находится в США, но есть и в Австралии, Японии, странах ЕС и ряде других. В совокупности это более 100 тысяч наборов данных, а реальный объём данных сложно измерить, но можно исходить из того что там минимум сотни терабайт, а скорее больше.
В реестре Dateno тоже есть записи с серверами ERDDAP [2] и пока их там чуть менее 70, по большинству из них ещё не собраны нужные метаданные и сами данные ещё не индексируются.
В ближайшие недели/месяцы мы, конечно, индексировать их начнём, поскольку они неплохо стандартизированы и пригодны для индексации. Но это та область которая как бы существует сама по себе, узкая нишевая научная инфраструктура в которой, в принципе, большинство исследователей и так знают где что искать.
Поэтому для Dateno эти каталоги данных пока не первоприоритетны, но они несомненно интересны для понимания того как устроены данных в отдельных научных дисциплинах. А что то и так индексируется с существующих дата каталогов где есть ссылки на данные из ERDDAP [3]
Ссылки:
[1] https://github.com/ERDDAP
[2] https://dateno.io/registry/catalog/cdi00004521/
[3] https://dateno.io/search?query=ERDDAP
#opendata #dataportals #datasets #oceans #climatology
В рубрике как это устроено у них несколько проектов с открытыми данными по всем государственным доменам в США.
.gov data [1] база всех доменов в зоне .gov, создана и актуализируется Cybersecurity and Infrastructure Security Agency, доступно в виде датасетов CSV файлов и файлов зоны .gov для DNS. Ведётся как полноценный дата продукт, регулярно обновляется.
GDA/govt-urls [3] репозиторий от U.S. General Services Administration с актуальным перечнем доменов/ссылок на все домены относящиеся к государству федеральные, уровня штатов, локальные, квазигосударственные и др. Огромное их число не в домене .gov кстати
ScanGov [4] публичный проект сканирования госсайтов на предмет соблюдения обязательных требований, рекомендаций и тд. В общем, лучшие практики. Создано в Civic Hacking Agency, использует базы сайтов выше и доступны новые датасеты [5]
Analytics.USA.gov [6] монитор статистики по большинству федеральных сайтов США. Отдаёт данные датасетами и API.
Service Status Checker [7] сервис проверки, мониторинга и уведомлений о недоступности для геопространственных сервисов. Мониторит большое число государственных геопространственных API в США, в основном это сервисы на базе ArcGIS и Geoserver, но не только их.
Ссылки:
[1] https://github.com/cisagov/dotgov-data
[2] https://get.gov/about/data/
[3] https://github.com/GSA/govt-urls
[4] https://scangov.org/
[5] https://docs.scangov.org/data
[6] https://analytics.usa.gov/
[7] https://statuschecker.fgdc.gov/
#opendata #government #domains #datasets
.gov data [1] база всех доменов в зоне .gov, создана и актуализируется Cybersecurity and Infrastructure Security Agency, доступно в виде датасетов CSV файлов и файлов зоны .gov для DNS. Ведётся как полноценный дата продукт, регулярно обновляется.
GDA/govt-urls [3] репозиторий от U.S. General Services Administration с актуальным перечнем доменов/ссылок на все домены относящиеся к государству федеральные, уровня штатов, локальные, квазигосударственные и др. Огромное их число не в домене .gov кстати
ScanGov [4] публичный проект сканирования госсайтов на предмет соблюдения обязательных требований, рекомендаций и тд. В общем, лучшие практики. Создано в Civic Hacking Agency, использует базы сайтов выше и доступны новые датасеты [5]
Analytics.USA.gov [6] монитор статистики по большинству федеральных сайтов США. Отдаёт данные датасетами и API.
Service Status Checker [7] сервис проверки, мониторинга и уведомлений о недоступности для геопространственных сервисов. Мониторит большое число государственных геопространственных API в США, в основном это сервисы на базе ArcGIS и Geoserver, но не только их.
Ссылки:
[1] https://github.com/cisagov/dotgov-data
[2] https://get.gov/about/data/
[3] https://github.com/GSA/govt-urls
[4] https://scangov.org/
[5] https://docs.scangov.org/data
[6] https://analytics.usa.gov/
[7] https://statuschecker.fgdc.gov/
#opendata #government #domains #datasets
Свежий годовой отчет Cloudflare о связности интернета и основных трендах [1]. Интересно хотя бы из-за масштаба Cloudflare, его однозначно можно отнести к компании управляющей глобальной критичной инфраструктурой.
Несколько быстрых фактов из их отчета:
- Chrome по прежнему доминирующий браузер в мире с более чем 65.8%. Далее Safari со значимыми 15.5%, Edge с 6.9% и Firefox с 4%
- Google по прежнему доминирует в поиске с 88.5%, но, на втором месте идёт Яндекс с 3.1%. Baidu и Bing от Яндекс'а отстают
- GoogleBot создаёт наибольшую нагрузку на веб сайты чем все остальные боты
- AI краулер Bytespider от Bytedance значительно уменьшил сбор данных в 2024 году, а ClaudeBot от Anthropic существенно подрос
- интернет трафик через StarLink вырос в 3.3 раза. После доступности сервиса StarLink у нескольких стран трафик вырос в десятки и даже сотни раз.
И там ещё много всего любопытного, а также у них есть интересный продукт Cloudflare Radar с открытой аналитикой и данными и API.
Кстати, очень показательный пример [2] дата продукта, дашборда, продукта дата аналитики и тд. Потому что это качественное совмещение визуализации и возможности самостоятельно работать с данными через API.
Ссылки:
[1] https://blog.cloudflare.com/radar-2024-year-in-review/
[2] https://radar.cloudflare.com
#opendata #datasets #analytics #readings
Несколько быстрых фактов из их отчета:
- Chrome по прежнему доминирующий браузер в мире с более чем 65.8%. Далее Safari со значимыми 15.5%, Edge с 6.9% и Firefox с 4%
- Google по прежнему доминирует в поиске с 88.5%, но, на втором месте идёт Яндекс с 3.1%. Baidu и Bing от Яндекс'а отстают
- GoogleBot создаёт наибольшую нагрузку на веб сайты чем все остальные боты
- AI краулер Bytespider от Bytedance значительно уменьшил сбор данных в 2024 году, а ClaudeBot от Anthropic существенно подрос
- интернет трафик через StarLink вырос в 3.3 раза. После доступности сервиса StarLink у нескольких стран трафик вырос в десятки и даже сотни раз.
И там ещё много всего любопытного, а также у них есть интересный продукт Cloudflare Radar с открытой аналитикой и данными и API.
Кстати, очень показательный пример [2] дата продукта, дашборда, продукта дата аналитики и тд. Потому что это качественное совмещение визуализации и возможности самостоятельно работать с данными через API.
Ссылки:
[1] https://blog.cloudflare.com/radar-2024-year-in-review/
[2] https://radar.cloudflare.com
#opendata #datasets #analytics #readings
Пишут что Гарвард опубликовал датасет из более чем 1 миллиона книг которые не закрыты копирайтом и можно их свободно использовать при обучении ИИ [1].
Правда ссылки на сам датасет мне нигде не удалось найти, и даже первоисточник новости на сайте Гарварда тоже, но тем не менее.
1 миллион книг при работе с которыми нет юридических рисков - это очень много, втрое больше чем набор данных Books3 [2] к которому были как раз юридические претензии.
К вопросу о больших языковых моделей, они создаются на текстах, тексты надо откуда-то брать.
Если Ваше правительство не создаёт большие открытые наборы данных с текстами на национальном языке, значит за него это сделает кто-то ещё.
В этом смысле судьба языков малочисленных народов всё более будет под вопросом. Без большого пласта письменной истории они совсем выпадут из обихода.
Ссылки:
[1] https://www.wired.com/story/harvard-ai-training-dataset-openai-microsoft/
[2] https://www.wired.com/story/battle-over-books3/
#languages #datasets #ai
Правда ссылки на сам датасет мне нигде не удалось найти, и даже первоисточник новости на сайте Гарварда тоже, но тем не менее.
1 миллион книг при работе с которыми нет юридических рисков - это очень много, втрое больше чем набор данных Books3 [2] к которому были как раз юридические претензии.
К вопросу о больших языковых моделей, они создаются на текстах, тексты надо откуда-то брать.
Если Ваше правительство не создаёт большие открытые наборы данных с текстами на национальном языке, значит за него это сделает кто-то ещё.
В этом смысле судьба языков малочисленных народов всё более будет под вопросом. Без большого пласта письменной истории они совсем выпадут из обихода.
Ссылки:
[1] https://www.wired.com/story/harvard-ai-training-dataset-openai-microsoft/
[2] https://www.wired.com/story/battle-over-books3/
#languages #datasets #ai
WIRED
Harvard Is Releasing a Massive Free AI Training Dataset Funded by OpenAI and Microsoft
The project’s leader says that allowing everyone to access the collection of public-domain books will help “level the playing field” in the AI industry.
А что есть наборы данных?
Мысли к которым я регулярно возвращаюсь - это размышления о том что есть данные, чем они не являются и то по каким критериям считать что цифровой объект это дата файл или датасет.
Вот несколько примеров для размышления. Репозитории данных TextGRID [1], Virtual Language Observatory [2] и ряда других репозиториев связанных с компьютерной лингвистикой содержат множество цифровых объектов которые, в целом, можно относить к данным, но одновременно с этим там огромное число мультимедиа объектов: аудио, изображений и видео, а также множество текстов.
С точки зрения компьютерных лингвистов это, наверняка, данные, но для всех остальных они немашиночитаемы. Можно ли считать их датасетами? Когда эти же цифровые объекты представлены как наборы данных для машинного обучения, то это точно датасеты, без сомнений. Почему? Потому что у них потребители дата сайентисты. А чем хуже компьютерные лингвисты тогда? Вот, в том то и вопрос.
Другой пример, обязательные к раскрытию документы публичных компаний. В США публикуют файлы через систему SEC, в других странах есть аналогичное, а также сайты бирж. Среди их документов много Excel файлов и табличек внутри файлов PDF и MS Word. Можно ли рассматривать их как датасеты? С точки зрения финансовых аналитиков это, как минимум, файлы с данными. А финансовые аналитики это тоже пользователи данных, и одни из самых активных. Так как, можно ли трактовать их как датасеты?
Или, к примеру, документы прайс листов которые компании публикуют у себя на сайтах и некоторых площадках. Это ни в какой форме не public domain, тут вероятно и авторское право присутствует. С другой стороны, никто же на него не покушается, если индексировать их поисковиком, то просто в условиях использования устанавливать что права защищены. Но можно ли такие файлы считать наборами данных? По моему скорее нет, чем да, но есть сомнения.
Главные отличия датасета от любого просто лежащего в интернете файла с данными - это наличие карточки метаданных, контент машиночитаем и наличествует квалифицированный потребитель. Но очень и очень много случаев когда потребитель не так квалифицирован, данные не совсем машиночитаемы, а карточка с метаданными минимальна.
Ссылки:
[1] https://textgridrep.org
[2] https://vlo.clarin.eu
#opendata #datasets #thoughts
Мысли к которым я регулярно возвращаюсь - это размышления о том что есть данные, чем они не являются и то по каким критериям считать что цифровой объект это дата файл или датасет.
Вот несколько примеров для размышления. Репозитории данных TextGRID [1], Virtual Language Observatory [2] и ряда других репозиториев связанных с компьютерной лингвистикой содержат множество цифровых объектов которые, в целом, можно относить к данным, но одновременно с этим там огромное число мультимедиа объектов: аудио, изображений и видео, а также множество текстов.
С точки зрения компьютерных лингвистов это, наверняка, данные, но для всех остальных они немашиночитаемы. Можно ли считать их датасетами? Когда эти же цифровые объекты представлены как наборы данных для машинного обучения, то это точно датасеты, без сомнений. Почему? Потому что у них потребители дата сайентисты. А чем хуже компьютерные лингвисты тогда? Вот, в том то и вопрос.
Другой пример, обязательные к раскрытию документы публичных компаний. В США публикуют файлы через систему SEC, в других странах есть аналогичное, а также сайты бирж. Среди их документов много Excel файлов и табличек внутри файлов PDF и MS Word. Можно ли рассматривать их как датасеты? С точки зрения финансовых аналитиков это, как минимум, файлы с данными. А финансовые аналитики это тоже пользователи данных, и одни из самых активных. Так как, можно ли трактовать их как датасеты?
Или, к примеру, документы прайс листов которые компании публикуют у себя на сайтах и некоторых площадках. Это ни в какой форме не public domain, тут вероятно и авторское право присутствует. С другой стороны, никто же на него не покушается, если индексировать их поисковиком, то просто в условиях использования устанавливать что права защищены. Но можно ли такие файлы считать наборами данных? По моему скорее нет, чем да, но есть сомнения.
Главные отличия датасета от любого просто лежащего в интернете файла с данными - это наличие карточки метаданных, контент машиночитаем и наличествует квалифицированный потребитель. Но очень и очень много случаев когда потребитель не так квалифицирован, данные не совсем машиночитаемы, а карточка с метаданными минимальна.
Ссылки:
[1] https://textgridrep.org
[2] https://vlo.clarin.eu
#opendata #datasets #thoughts
В рубрике как это устроено у них порталы данных эпидемиологических исследований, для них существует специальное ПО с открытым кодом Obiba Mica [1], я в прошлом году упоминал [2] портал с данными по COVID-19, но это далеко не единственный такой проект с данными.
На базе Obiba Mica работает несколько десятков порталов данных в рамках проектов RECAP Preterm [3], европейский проект мониторинга детей с недостаточным весом и рождённых до срока и EUCAN Connect [4] совместные проекты Евросоюза и Канады в области персонализированной и превентивной медицины. Инсталляции на базе Obiba Mica разбросаны по разным странам: Испания [5], Португалия [6] и многие другие.
В чём особенность этих порталов? Во первых они не содержат открытые данные. Практически всегда содержащиеся там данные - это медицинские сведения, даже если они деперсонализированы, они более всего похожи на микроданные переписей и также организованы.
У датасетов есть переменные и метаданные которые детально описаны, доступны, стандартизированы, но сами данные доступны только после регистрации, направления запроса и получения подтверждения.
И, конечно, это продукт с открытым исходным кодом [7].
Во многих научных дисциплинах есть специализированные продукты/каталоги данных используемых для доступа к данным исследований в форме специфичной для этой дисциплины и Obiba Mica - это один из таких примеров.
В реестре Dateno есть около 20 дата порталов на базе Obiba Mica, в дикой среде их ещё где-то столько же, но в индексе Dateno их нет, поскольку данные из таких каталогов недоступны, а есть только метаданные. А это снижает приоритет индексирования, не говоря уже о том что наборов данных в таких порталах немного, от единиц до пары сотен датасетов.
Ссылки:
[1] https://www.obiba.org/pages/products/mica/
[2] https://yangx.top/begtin/5053
[3] https://recap-preterm.eu/
[4] https://eucanconnect.com/
[5] https://coral.igtp.cat/pub/
[6] https://recap-ispup.inesctec.pt/pub/
[7] https://github.com/obiba
#opendata #datacatalogs #datasets #dateno #microdata #epidemiology
На базе Obiba Mica работает несколько десятков порталов данных в рамках проектов RECAP Preterm [3], европейский проект мониторинга детей с недостаточным весом и рождённых до срока и EUCAN Connect [4] совместные проекты Евросоюза и Канады в области персонализированной и превентивной медицины. Инсталляции на базе Obiba Mica разбросаны по разным странам: Испания [5], Португалия [6] и многие другие.
В чём особенность этих порталов? Во первых они не содержат открытые данные. Практически всегда содержащиеся там данные - это медицинские сведения, даже если они деперсонализированы, они более всего похожи на микроданные переписей и также организованы.
У датасетов есть переменные и метаданные которые детально описаны, доступны, стандартизированы, но сами данные доступны только после регистрации, направления запроса и получения подтверждения.
И, конечно, это продукт с открытым исходным кодом [7].
Во многих научных дисциплинах есть специализированные продукты/каталоги данных используемых для доступа к данным исследований в форме специфичной для этой дисциплины и Obiba Mica - это один из таких примеров.
В реестре Dateno есть около 20 дата порталов на базе Obiba Mica, в дикой среде их ещё где-то столько же, но в индексе Dateno их нет, поскольку данные из таких каталогов недоступны, а есть только метаданные. А это снижает приоритет индексирования, не говоря уже о том что наборов данных в таких порталах немного, от единиц до пары сотен датасетов.
Ссылки:
[1] https://www.obiba.org/pages/products/mica/
[2] https://yangx.top/begtin/5053
[3] https://recap-preterm.eu/
[4] https://eucanconnect.com/
[5] https://coral.igtp.cat/pub/
[6] https://recap-ispup.inesctec.pt/pub/
[7] https://github.com/obiba
#opendata #datacatalogs #datasets #dateno #microdata #epidemiology
В MIT Technology Preview статья This is where the data to build AI comes from [1] о том откуда разработчики ИИ берут данные. В основе статьи доклад от группы The Data Provenance Initiative занимающейся анализом источников данных для ИИ, исследованием происхождения и юридического статуса наборов данных.
Работа эта, в целом, неблагодарная, но необходимая и в этом докладе и в статье много важных инсайтов которые можно начать с того что 90% всех данных на которых учат ИИ происходят из США и Европы. Факт которые кажется и так очевидным, но тут имеющий фактическое подтверждение.
Другой факт который я бы выделил. в том что прямой вклад государства в наборы данных для ИИ менее 10%. Среди создателей датасетов в виде текстовых ресурсов это только 9.3%, для аудио около 6% и для видео не более 1%.
Большая часть качественных датасетов создаются исследовательскими центрами и группами, а также лабораториями от индустрии разработчиков ИИ.
Важно также что резко растёт использование синтетических данных, данных соцмедиа и текстов веб сайтов, это существенное изменение по сравнению с тем как ранее собирались академические наборы данных в компьютерной лингвистике.
И, наконец, немаловажно что многие источники датасетов имеют гораздо большие ограничения на использование чем декларируемые лицензии. Простой пример, кто-то собрал датасет с видео из ТикТока и выложил его под лицензией CC-BY, но лицензия ТикТока не CC-BY, она довольно запретительна и разработчики ИИ имеют юридические риски в таких случаях, а их очень много.
Ссылки:
[1] https://www.technologyreview.com/2024/12/18/1108796/this-is-where-the-data-to-build-ai-comes-from/
[2] https://www.dataprovenance.org/Multimodal_Data_Provenance.pdf
#opendata #ai #datasets #linguistics
Работа эта, в целом, неблагодарная, но необходимая и в этом докладе и в статье много важных инсайтов которые можно начать с того что 90% всех данных на которых учат ИИ происходят из США и Европы. Факт которые кажется и так очевидным, но тут имеющий фактическое подтверждение.
Другой факт который я бы выделил. в том что прямой вклад государства в наборы данных для ИИ менее 10%. Среди создателей датасетов в виде текстовых ресурсов это только 9.3%, для аудио около 6% и для видео не более 1%.
Большая часть качественных датасетов создаются исследовательскими центрами и группами, а также лабораториями от индустрии разработчиков ИИ.
Важно также что резко растёт использование синтетических данных, данных соцмедиа и текстов веб сайтов, это существенное изменение по сравнению с тем как ранее собирались академические наборы данных в компьютерной лингвистике.
И, наконец, немаловажно что многие источники датасетов имеют гораздо большие ограничения на использование чем декларируемые лицензии. Простой пример, кто-то собрал датасет с видео из ТикТока и выложил его под лицензией CC-BY, но лицензия ТикТока не CC-BY, она довольно запретительна и разработчики ИИ имеют юридические риски в таких случаях, а их очень много.
Ссылки:
[1] https://www.technologyreview.com/2024/12/18/1108796/this-is-where-the-data-to-build-ai-comes-from/
[2] https://www.dataprovenance.org/Multimodal_Data_Provenance.pdf
#opendata #ai #datasets #linguistics
В рубрике как это устроено у них European Health Information Gateway [1] портал данных Всемирной организации здравоохранения (WHO) на котором опубликованы десятки наборов данных с данными по статистике здравоохранения, целевым исследованиям, мониторингу и отчётам по европейским странам. Причём к Европе там отнесены и Турция, и Россия, и Армения и страны Центральной Азии. По каждой из стран доступно множество индикаторов и есть возможность работать с этими данными с помощью API [2].
Сам сайт представлен на двух языках, английском и русском, что тоже нестандартно для сайтов структур ООН, обычно там или только английский, или набор основных языков ООН.
Для тех кто ищет региональные данные не обязательно отправляться на сайт WHO, можно обратить внимание на их региональные порталы с данными. Другие примеры таких порталов по регионам:
- data.wpro.who.int - Western Pacific [3]
- opendata.paho.org - Americas [4]
- hip.searo.who.int - South-East Asia [5]
и так далее. Среди них европейский портал сделан существенно лучше, там, и удобное API,и отдельно датасеты и отдельно индикаторы.
Ссылки:
[1] https://gateway.euro.who.int/en/
[2] https://gateway.euro.who.int/en/api/
[3] https://data.wpro.who.int/
[4] https://opendata.paho.org/en
[5] https://hip.searo.who.int/dhis/dhis-web-commons/security/login.action
#opendata #datasets #europe #statistics #healthcare
Сам сайт представлен на двух языках, английском и русском, что тоже нестандартно для сайтов структур ООН, обычно там или только английский, или набор основных языков ООН.
Для тех кто ищет региональные данные не обязательно отправляться на сайт WHO, можно обратить внимание на их региональные порталы с данными. Другие примеры таких порталов по регионам:
- data.wpro.who.int - Western Pacific [3]
- opendata.paho.org - Americas [4]
- hip.searo.who.int - South-East Asia [5]
и так далее. Среди них европейский портал сделан существенно лучше, там, и удобное API,и отдельно датасеты и отдельно индикаторы.
Ссылки:
[1] https://gateway.euro.who.int/en/
[2] https://gateway.euro.who.int/en/api/
[3] https://data.wpro.who.int/
[4] https://opendata.paho.org/en
[5] https://hip.searo.who.int/dhis/dhis-web-commons/security/login.action
#opendata #datasets #europe #statistics #healthcare
В рубрике как это устроено у них портал статистики Резервного банка Индии Database on Indian Economy [1] на котором публикуются сотни индикаторов и статистических данных страны и более тысячи таблиц в общей сложности.
Большая часть индикаторов годовые и квартальные, но есть и дневные и еженедельные показатели [2]. Портал отличается тем что совмещает визуализацию данных с возможностью получить в машиночитаемой форме через систему запросов к базе данных [3].
Из плюсов:
- много индикаторов
- есть оперативные показатели (до суток)
- централизованный поиск
- получение данных в CSV формате
Из минусов:
- нет документированного API (недокументированное есть)
- нет поддержки SDMX
- нет возможности массовой выгрузки (bulk download)
Если говорить объективно, то это очень консервативная штука сделанная на базе SAP BI и объективно неудобная, но на фоне многих других баз индикаторов в Индии она не так уже плоха.
Ссылки:
[1] https://data.rbi.org.in/#/dbie/home
[2] https://data.rbi.org.in/#/dbie/indicators
[3] https://data.rbi.org.in/#/dbie/dataquery_enhanced
#opendata #datasets #datacatalogs #statistics #india
Большая часть индикаторов годовые и квартальные, но есть и дневные и еженедельные показатели [2]. Портал отличается тем что совмещает визуализацию данных с возможностью получить в машиночитаемой форме через систему запросов к базе данных [3].
Из плюсов:
- много индикаторов
- есть оперативные показатели (до суток)
- централизованный поиск
- получение данных в CSV формате
Из минусов:
- нет документированного API (недокументированное есть)
- нет поддержки SDMX
- нет возможности массовой выгрузки (bulk download)
Если говорить объективно, то это очень консервативная штука сделанная на базе SAP BI и объективно неудобная, но на фоне многих других баз индикаторов в Индии она не так уже плоха.
Ссылки:
[1] https://data.rbi.org.in/#/dbie/home
[2] https://data.rbi.org.in/#/dbie/indicators
[3] https://data.rbi.org.in/#/dbie/dataquery_enhanced
#opendata #datasets #datacatalogs #statistics #india
К вопросу о том где и как искать данные и что такое каталоги данных, есть отдельная категория каталогов данных в виде репозиториев результатов научной деятельности в которых чего только нет, но обычно это статьи, диссертации, магистерские работы, книги и реже медиафайлы и курсы. Но там бывают и данные, чаще всего их доля не очень велика, если это не специализированный репозиторий именно для данных.
Университеты таким образом публикующие данные, чаще всего используют продукты вроде DSpace, Eprints, Elsevier Pure и ещё ряд других, менее популярных.
Ключевой вопрос включать ли их все в реестр каталогов Dateno? Если да, то по каким критериям? По числу датасетов? По доле датасетов от общей доли публикации? По потенциальной возможности что датасеты там могут появится в будущем?
Вот живой пример Архив открытого доступа Санкт-Петербургского государственного университета [1], один из немногих и возможно крупнейший ресурс раскрытия публикаций университетов в России. Всего в нём сейчас 47619 публикаций. И это не то чтобы мало, даже много. Но из них всего 17 публикаций являются наборами данных и помечены как тип Dataset. Это 0.03% от общего числа публикаций. Можно ли его считать каталогом открытых данных или нет? Добавлю что ещё и то что инсталляции DSpace без доп настроек не дают поиска по типу ресурса и чтобы найти даже эти 17 датасетов пришлось скачать метаданных все 47+ тысяч записей.
А также добавлю что есть множество репозиториев научных публикаций где датасетов совсем нет, это почти все репозитории публикаций в Армении, в Казахстане и многие репозитории российских университетов.
Но ведь данные там появится могут, так что же регулярно проверять что там данные появились и только тогда вносить их как каталоги данных?
Ссылки:
[1] https://dspace.spbu.ru
[2] https://dspace.spbu.ru/handle/11701/17114?mode=full
#opendata #openaccess #researchdata #datasets
Университеты таким образом публикующие данные, чаще всего используют продукты вроде DSpace, Eprints, Elsevier Pure и ещё ряд других, менее популярных.
Ключевой вопрос включать ли их все в реестр каталогов Dateno? Если да, то по каким критериям? По числу датасетов? По доле датасетов от общей доли публикации? По потенциальной возможности что датасеты там могут появится в будущем?
Вот живой пример Архив открытого доступа Санкт-Петербургского государственного университета [1], один из немногих и возможно крупнейший ресурс раскрытия публикаций университетов в России. Всего в нём сейчас 47619 публикаций. И это не то чтобы мало, даже много. Но из них всего 17 публикаций являются наборами данных и помечены как тип Dataset. Это 0.03% от общего числа публикаций. Можно ли его считать каталогом открытых данных или нет? Добавлю что ещё и то что инсталляции DSpace без доп настроек не дают поиска по типу ресурса и чтобы найти даже эти 17 датасетов пришлось скачать метаданных все 47+ тысяч записей.
А также добавлю что есть множество репозиториев научных публикаций где датасетов совсем нет, это почти все репозитории публикаций в Армении, в Казахстане и многие репозитории российских университетов.
Но ведь данные там появится могут, так что же регулярно проверять что там данные появились и только тогда вносить их как каталоги данных?
Ссылки:
[1] https://dspace.spbu.ru
[2] https://dspace.spbu.ru/handle/11701/17114?mode=full
#opendata #openaccess #researchdata #datasets
Я, кстати, искал примеры живых данных в формате Parquet которые бы публиковались целенаправленно как открытые данные и таки нашёл.
Проект Open Performance Data Initiative (OPDI) [1] создан Евроконтролем в 2022 году для публикации данных об эффективности управления воздушным трафиком.
Данные на портале публикуются в виде Parquet файлов [2], с интервалами дат и инструкцией по их автоматической загрузке. По сути симуляция API.
Причём данных там немало. Данные о событиях за 10 дней собираются в Parquet файл размером до 150МБ что с учётом сжатия формата хранения раскрывается в сотни миллионов значений за три года.
Ссылки:
[1] https://www.opdi.aero
[2] https://www.opdi.aero/flight-event-data
#opendata #europe #transport #airtraffic #datasets
Проект Open Performance Data Initiative (OPDI) [1] создан Евроконтролем в 2022 году для публикации данных об эффективности управления воздушным трафиком.
Данные на портале публикуются в виде Parquet файлов [2], с интервалами дат и инструкцией по их автоматической загрузке. По сути симуляция API.
Причём данных там немало. Данные о событиях за 10 дней собираются в Parquet файл размером до 150МБ что с учётом сжатия формата хранения раскрывается в сотни миллионов значений за три года.
Ссылки:
[1] https://www.opdi.aero
[2] https://www.opdi.aero/flight-event-data
#opendata #europe #transport #airtraffic #datasets
Продолжая подводить итоги года, для меня лично в этом году важнейшим проектом был и останется в 2025 году - Dateno, поисковик по датасетам по всему миру который наша команда строила в 2024 году. Сейчас там 19 миллионов наборов данных, скоро будет больше, равно как и больше возможностей которые поисковик будет предоставлять.
Dateno, отчасти, возник спонтанно. Мне давно хотелось сделать большой проект на весь мир по открытым данным, но первоначально амбиции были только создать универсальный реестр всех дата-ресурсов (реестр каталогов данных), а далее так получилось что на их основе оказалось не так сложно построить поисковую машину.
За 2024 год удалось:
- проиндексировать более 19 миллионов датасетов
- подготовить харвестеры для более чем 15 типов порталов открытых данных, индикаторов и геоданных
- реализовать API доступное пользователям Dateno
- собрать внушительную базу пользователей
- подготовить всё необходимое для индексации ещё нескольких десятков миллионов наборов данных
- обогатить собранные карточки датасетов метаданными о странах, тематиках, правах на использование
Тут есть чем гордиться и много работы ещё предстоит.
1. Больше социально-экономических данных.
Это касается индикаторов, временных рядов и иных данных которые чаще всего публикуются на порталах открытых данных и порталах индикаторов. Сейчас из запланированных крупных каталогов данных проиндексированы только около половины и дальше их будет больше.
Сейчас у Dateno есть небольшой уклон в такого рода данные поскольку они одни из наиболее востребованных и он может вырасти по мере индексации новых источников.
2. Значительно увеличить число наборов данных
Это очень простая задача если не беспокоиться о качестве данных, достаточно загрузить карточки датасетов из нескольких научных агрегаторов и это сразу добавить +20 миллионов наборов данных. Но, качество метаданных там ограничено только описанием, без ссылок на ресурсы к которым можно было бы обращаться напрямую. Такие датасеты несут куда меньше пользы для пользователей, хотя и из них в основном состоят поисковые индексы Google Dataset Search (GDS), OpenAIRE, BASE и ряда других поисковиков. Карточки датасетов без ресурсов позволяют резко нарастить индекс, но наличие ресурсов у карточки - это одна из наших внутренних метрик качества поискового индекса. Этот баланс качества и количества важен и он один из главных сдерживающих факторов роста индекса Dateno, тем не менее рост этот неизбежен.
3. Больше интеграционных возможностей
У Dateno уже есть API которым можно воспользоваться и далее это API будет развиваться в сторону его интеграции с инструментами для дата аналитиков и дата инженеров. Интеграция и API - это важные атрибуты любого сервиса, особенно для работы с данными. Невозможно всё придумать и сделать силами только одной команды и API позволяет другим улучшать и развивать свои продукты.
4. Больше возможностей
Сейчас Dateno позволяет только искать данные, но не проводить с ними какие-либо операции и это изменится. Не сразу и я не буду заранее говорить какие именно возможности появятся, но они будут.
Наша цель чтобы Dateno стал регулярным инструментом для каждого дата аналитика, дата инженера и дата сайентиста, так что работы ещё много)
#opendata #dateno #datasets #yearinreview
Dateno, отчасти, возник спонтанно. Мне давно хотелось сделать большой проект на весь мир по открытым данным, но первоначально амбиции были только создать универсальный реестр всех дата-ресурсов (реестр каталогов данных), а далее так получилось что на их основе оказалось не так сложно построить поисковую машину.
За 2024 год удалось:
- проиндексировать более 19 миллионов датасетов
- подготовить харвестеры для более чем 15 типов порталов открытых данных, индикаторов и геоданных
- реализовать API доступное пользователям Dateno
- собрать внушительную базу пользователей
- подготовить всё необходимое для индексации ещё нескольких десятков миллионов наборов данных
- обогатить собранные карточки датасетов метаданными о странах, тематиках, правах на использование
Тут есть чем гордиться и много работы ещё предстоит.
1. Больше социально-экономических данных.
Это касается индикаторов, временных рядов и иных данных которые чаще всего публикуются на порталах открытых данных и порталах индикаторов. Сейчас из запланированных крупных каталогов данных проиндексированы только около половины и дальше их будет больше.
Сейчас у Dateno есть небольшой уклон в такого рода данные поскольку они одни из наиболее востребованных и он может вырасти по мере индексации новых источников.
2. Значительно увеличить число наборов данных
Это очень простая задача если не беспокоиться о качестве данных, достаточно загрузить карточки датасетов из нескольких научных агрегаторов и это сразу добавить +20 миллионов наборов данных. Но, качество метаданных там ограничено только описанием, без ссылок на ресурсы к которым можно было бы обращаться напрямую. Такие датасеты несут куда меньше пользы для пользователей, хотя и из них в основном состоят поисковые индексы Google Dataset Search (GDS), OpenAIRE, BASE и ряда других поисковиков. Карточки датасетов без ресурсов позволяют резко нарастить индекс, но наличие ресурсов у карточки - это одна из наших внутренних метрик качества поискового индекса. Этот баланс качества и количества важен и он один из главных сдерживающих факторов роста индекса Dateno, тем не менее рост этот неизбежен.
3. Больше интеграционных возможностей
У Dateno уже есть API которым можно воспользоваться и далее это API будет развиваться в сторону его интеграции с инструментами для дата аналитиков и дата инженеров. Интеграция и API - это важные атрибуты любого сервиса, особенно для работы с данными. Невозможно всё придумать и сделать силами только одной команды и API позволяет другим улучшать и развивать свои продукты.
4. Больше возможностей
Сейчас Dateno позволяет только искать данные, но не проводить с ними какие-либо операции и это изменится. Не сразу и я не буду заранее говорить какие именно возможности появятся, но они будут.
Наша цель чтобы Dateno стал регулярным инструментом для каждого дата аналитика, дата инженера и дата сайентиста, так что работы ещё много)
#opendata #dateno #datasets #yearinreview
В рубрике как это устроено у них программа AirNow [1] по сбору информации и информированию граждан о качестве воздуха в Соединённых Штатах Америки. Ведётся федеральным агентством EPA и охватывает буквально все населённые пункты и графства, а также посольства в десятках стран по всему миру [2]. Если это не крупнейшая, то одна из крупнейших инициатив в мире по мониторингу качества воздуха по множеству критериев.
Для рядовых пользователей можно получить значения на сайте проекта, а для разработчиков и аналитиков доступны API [3] и данные [4]. Причём данные доступны для массовой выгрузки (можно скачать хоть всю базу целиком и сразу) с измерениями начиная с 1980 года.
Помимо данных посольств собираются ещё и данные от организацией партнеров по мониторингу, например, из Канады и Мексики. Поэтому, вместе с данными посольств, хотя и эта программа мониторинга действует внутри США, но частично охватывает и другие страны.
Ссылки:
[1] https://www.airnow.gov/
[2] https://www.airnow.gov/international/us-embassies-and-consulates/
[3] https://docs.airnowapi.org/
[4] https://www.epa.gov/outdoor-air-quality-data
#opendata #datasets #weather #airquality #usa
Для рядовых пользователей можно получить значения на сайте проекта, а для разработчиков и аналитиков доступны API [3] и данные [4]. Причём данные доступны для массовой выгрузки (можно скачать хоть всю базу целиком и сразу) с измерениями начиная с 1980 года.
Помимо данных посольств собираются ещё и данные от организацией партнеров по мониторингу, например, из Канады и Мексики. Поэтому, вместе с данными посольств, хотя и эта программа мониторинга действует внутри США, но частично охватывает и другие страны.
Ссылки:
[1] https://www.airnow.gov/
[2] https://www.airnow.gov/international/us-embassies-and-consulates/
[3] https://docs.airnowapi.org/
[4] https://www.epa.gov/outdoor-air-quality-data
#opendata #datasets #weather #airquality #usa
В рубрике интересных каталогов данных OpenAIP [1], открытая база и каталог данных по авиационной инфраструктуре.
Включает данные по воздушному пространству, аэропортам, препятствиям, контрольным пунктам и иным значимым сведениям почти по всем странам.
При этом детальность сильно варьируется, к примеру Европа описана максимально подробно, а Китай и Россия в основном в виде информации о аэропортах.
Но сама база велика, это:
- 46 тысяч аэропортов
- 23 тысячи записей о воздушном пространстве
- 335 тысяч препятствий
- 2 тысячи полей для авиамоделирования
- 3.7 тысячи навигационных маяков
и так далее, база хотя и не полна, но для открытого проекта весьма велика.
Данные из неё экспортируются в специальном разделе [2] по странам и в нескольких форматах включая специфичные для навигации и авиации SeeYou CUP, Openaip v1 AIP, OpenAIR и др. и это более 10 тысяч файлов данных (наборов данных скорее всего около 3-4 тысяч, поскольку одни и те же данные в могут быть в нескольких форматах. Собственно это и превращает проект из онлайн базы данных, в каталог данных где экспорт отдельных датасетов по странам вполне логичен.
Распространяется под свободной лицензией CC-BY-NC (свободное использование в некоммерческих целях). Часть кода доступно как открытый код [3]
Ссылки:
[1] https://www.openaip.net
[2] https://www.openaip.net/data/exports?page=1&limit=50&sortBy=createdAt&sortDesc=true
[3] https://github.com/openAIP
#aviation #opendata #datasets
Включает данные по воздушному пространству, аэропортам, препятствиям, контрольным пунктам и иным значимым сведениям почти по всем странам.
При этом детальность сильно варьируется, к примеру Европа описана максимально подробно, а Китай и Россия в основном в виде информации о аэропортах.
Но сама база велика, это:
- 46 тысяч аэропортов
- 23 тысячи записей о воздушном пространстве
- 335 тысяч препятствий
- 2 тысячи полей для авиамоделирования
- 3.7 тысячи навигационных маяков
и так далее, база хотя и не полна, но для открытого проекта весьма велика.
Данные из неё экспортируются в специальном разделе [2] по странам и в нескольких форматах включая специфичные для навигации и авиации SeeYou CUP, Openaip v1 AIP, OpenAIR и др. и это более 10 тысяч файлов данных (наборов данных скорее всего около 3-4 тысяч, поскольку одни и те же данные в могут быть в нескольких форматах. Собственно это и превращает проект из онлайн базы данных, в каталог данных где экспорт отдельных датасетов по странам вполне логичен.
Распространяется под свободной лицензией CC-BY-NC (свободное использование в некоммерческих целях). Часть кода доступно как открытый код [3]
Ссылки:
[1] https://www.openaip.net
[2] https://www.openaip.net/data/exports?page=1&limit=50&sortBy=createdAt&sortDesc=true
[3] https://github.com/openAIP
#aviation #opendata #datasets
В рубрике как это работает у них отдельный интересный пример работы статслужб на примере Office for National Statistics в Великобритании.
У них сайт службы де-факто превращён в портал данных. Не идеальный, например, нет перечня вообще всего что опубликовано, но очень интересный, потому что хорошо структурирован по разделам и работать с ним удобно по предметным областям.
Вот у него есть, как минимум, три важных особенности:
1. Что кроме самих данных статслужбы что они обязаны публиковать, они ещё и публикуют то что у них запрашивают (!!). Идея за этим проста, есть запросы на публикацию сведений по FOI (Freedom of Information Requests) и если запрашиваемые данные не содержат ничего персонального то деньги налогоплательщиков тратятся на создание датасета и этот датасет должен быть общедоступен. Очень правильная идея в своей основе. [1]
2. У них есть каталог временных рядов на основе переписи [2] с более чем 66 тысячами рядов. Поиск по ним неидеален, даже географических фасетов нет, но и в текущем виде работает.
3. И у них есть портал для разработчиков [3] по работе со стат данными, в первую очередь переписи, что позволяет с тем же банков временных рядов работать через API.
Опять же идеализировать нельзя, много чего нет, например, нет экспорта каталога данных в DCAT, нет поддержки SDMX, документированное API охватывает не всё, многие наборы данных на сайте только в Excel формате, но вот перечисленные три особенности реально полезны.
Ссылки:
[1] https://www.ons.gov.uk/businessindustryandtrade/business/businessservices/datalist?page=1&filter=user_requested_data
[2] https://www.ons.gov.uk/timeseriestool
[3] https://developer.ons.gov.uk/
#opendata #statistics #uk #datasets #datacatalogs
У них сайт службы де-факто превращён в портал данных. Не идеальный, например, нет перечня вообще всего что опубликовано, но очень интересный, потому что хорошо структурирован по разделам и работать с ним удобно по предметным областям.
Вот у него есть, как минимум, три важных особенности:
1. Что кроме самих данных статслужбы что они обязаны публиковать, они ещё и публикуют то что у них запрашивают (!!). Идея за этим проста, есть запросы на публикацию сведений по FOI (Freedom of Information Requests) и если запрашиваемые данные не содержат ничего персонального то деньги налогоплательщиков тратятся на создание датасета и этот датасет должен быть общедоступен. Очень правильная идея в своей основе. [1]
2. У них есть каталог временных рядов на основе переписи [2] с более чем 66 тысячами рядов. Поиск по ним неидеален, даже географических фасетов нет, но и в текущем виде работает.
3. И у них есть портал для разработчиков [3] по работе со стат данными, в первую очередь переписи, что позволяет с тем же банков временных рядов работать через API.
Опять же идеализировать нельзя, много чего нет, например, нет экспорта каталога данных в DCAT, нет поддержки SDMX, документированное API охватывает не всё, многие наборы данных на сайте только в Excel формате, но вот перечисленные три особенности реально полезны.
Ссылки:
[1] https://www.ons.gov.uk/businessindustryandtrade/business/businessservices/datalist?page=1&filter=user_requested_data
[2] https://www.ons.gov.uk/timeseriestool
[3] https://developer.ons.gov.uk/
#opendata #statistics #uk #datasets #datacatalogs
В рубрике как это устроено у них карта растительности Японии [1] доступна в виде в виде 16 Shape файлов по префектурам страны, общим объёмом 4.4GB с детализацией 1/25000.
Он же, уже преобразованный в формат GeoParquet объёмом в 6.2GB в каталоге Source Cooperative [2] где публикуется немало больших геодатасетов.
Таких подробных и открытых карт растительности в мире немного, на уровне страны мне ранее не попадались.
Хороший тест для любой геоинформационной системы способность отобразить такие данные.
Ещё одно наблюдение, в Японии данных публикуется много, но каким-то своим необычным способом. Национальные порталы вроде есть, но найти на них что-то значимое сложно.
Ссылки:
[1] http://gis.biodic.go.jp/webgis/sc-025.html?kind=vg67
[2] https://source.coop/repositories/pacificspatial/vegetation-jp/access
#datasets #opendata #japan
Он же, уже преобразованный в формат GeoParquet объёмом в 6.2GB в каталоге Source Cooperative [2] где публикуется немало больших геодатасетов.
Таких подробных и открытых карт растительности в мире немного, на уровне страны мне ранее не попадались.
Хороший тест для любой геоинформационной системы способность отобразить такие данные.
Ещё одно наблюдение, в Японии данных публикуется много, но каким-то своим необычным способом. Национальные порталы вроде есть, но найти на них что-то значимое сложно.
Ссылки:
[1] http://gis.biodic.go.jp/webgis/sc-025.html?kind=vg67
[2] https://source.coop/repositories/pacificspatial/vegetation-jp/access
#datasets #opendata #japan
gis.biodic.go.jp
Shapeデータダウンロード((総合)振興局別・都道府県別)
環境省自然環境局生物多様性センターでは、わが国の植生、動植物の分布、河川・湖沼、干潟、サンゴ礁などについて基礎的な調査やモニタリングを実施しています。
В рубрике как это устроено у них платформа ioChem-DB [1] каталог данных в области вычислительной химии и материаловедения, не сомневаюсь что большинство химиков работающих с химическими формулами с ним сталкивались.
Его особенность в том что это по-факту:
- специальный набор инструментов по подготовке и преобразованию данных
- модель данных для описания данных
- платформа на базе DSpace для публикации данных в первичном и в преобразованных форматах.
Основной сайт агрегирует данные собранные из других порталов.
Большая часть данных публикуется в форматах Chemical Markup Language (CML) [2] и под свободными лицензиями.
Важная особенность в том что названия и описания этих наборов данных могут быть крайне минималистичны и состоять только из какого-нибудь кода, например 000112758 [3]
Поэтому я лично не знаю как химики используют там поиск и не могу сказать что понимаю как добавлять такие данные в Dateno [4] потому что хоть это и датасеты, но кто сможет найти их с таким-то описанием?
Ссылки:
[1] https://www.iochem-bd.org
[2] https://www.xml-cml.org
[3] https://iochem-bd.bsc.es/browse/handle/100/87916
[4] https://dateno.io
#opendata #chemistry #opensource #datasets #dateno
Его особенность в том что это по-факту:
- специальный набор инструментов по подготовке и преобразованию данных
- модель данных для описания данных
- платформа на базе DSpace для публикации данных в первичном и в преобразованных форматах.
Основной сайт агрегирует данные собранные из других порталов.
Большая часть данных публикуется в форматах Chemical Markup Language (CML) [2] и под свободными лицензиями.
Важная особенность в том что названия и описания этих наборов данных могут быть крайне минималистичны и состоять только из какого-нибудь кода, например 000112758 [3]
Поэтому я лично не знаю как химики используют там поиск и не могу сказать что понимаю как добавлять такие данные в Dateno [4] потому что хоть это и датасеты, но кто сможет найти их с таким-то описанием?
Ссылки:
[1] https://www.iochem-bd.org
[2] https://www.xml-cml.org
[3] https://iochem-bd.bsc.es/browse/handle/100/87916
[4] https://dateno.io
#opendata #chemistry #opensource #datasets #dateno
Teable [1] опенсорс продукт и онлайн сервис по созданию интерфейса а ля Airtable поверх баз Postgresql и Sqlite.
Для тех кто ранее сталкивался с Airtable и редактировал онлайн свои таблицы - это более чем идеальная замена. Если Airtable ушли по пути стремительной монетизации и превращения онлайн таблиц в конструкторы приложений, то тут продукт куда более близкий к изначальной идее таблиц онлайн. Фактически это онлайн замена MS Access, но, и это важно, поверх классической СУБД. А то есть данные можно править и вручную и автоматизировано.
Я теста ради загрузил одну из наиболее крупных таблиц из Airtable что у меня были, это таблица российских госдоменов для проекта @ruarxive (Национальный цифровой архив) и работает сервис прекрасно.
Ещё одна важная его особенность - это его можно разворачивать локально и работать со своими данным на собственном экземпляре продукта.
Ну а также они в бета режиме сейчас предоставляют сам сервис онлайн бесплатно, но монетизацию рано или поздно введут, так что open source выглядит интереснее.
Ссылки:
[1] https://teable.io
#opensource #datasets #datatools
Для тех кто ранее сталкивался с Airtable и редактировал онлайн свои таблицы - это более чем идеальная замена. Если Airtable ушли по пути стремительной монетизации и превращения онлайн таблиц в конструкторы приложений, то тут продукт куда более близкий к изначальной идее таблиц онлайн. Фактически это онлайн замена MS Access, но, и это важно, поверх классической СУБД. А то есть данные можно править и вручную и автоматизировано.
Я теста ради загрузил одну из наиболее крупных таблиц из Airtable что у меня были, это таблица российских госдоменов для проекта @ruarxive (Национальный цифровой архив) и работает сервис прекрасно.
Ещё одна важная его особенность - это его можно разворачивать локально и работать со своими данным на собственном экземпляре продукта.
Ну а также они в бета режиме сейчас предоставляют сам сервис онлайн бесплатно, но монетизацию рано или поздно введут, так что open source выглядит интереснее.
Ссылки:
[1] https://teable.io
#opensource #datasets #datatools