Ivan Begtin
8.04K subscribers
1.96K photos
3 videos
102 files
4.67K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts [email protected]
加入频道
Я периодически рассказываю о внутренностях не только Dateno, но и реестра каталогов данных на которых он основан. Я начинал его делать ещё в до самого поисковика и изначально он был разделен на две части.

1-я - это чистовые дата каталоги, по которым метаданные, в основном, собранные вручную. Они были в репозитории в каталоге entries и каждая запись выглядела как YAML файл по определённой структуре. У них был префикс 'cdi' для идентификаторов.

2-я - это временные записи, которые не проходили ручную верификацию и которых было около половины всех каталогов. По ним не были заполнены большая часть сведений которые часто из реестра удалялись. Эти записи были родом из системы поиска каталогов данных которая иногда находила те из них которые уже давно удалены. Они существовали с префиксом "temp" и были в каталоге scheduled.

В итоге оказалось что при обновлении метаданных каждый раз была необходимость удалять старый префикс и назначать новый, а также в том что разделение неэффективно. Приходилось дублировать все операции по обогащению данных на два каталога.

Поэтому одно из важных актуальных изменений реестра в том чтобы свести их в единую модель. И сейчас в последней версии реестра на Github'е [1] лежит датасет с переназначенными идентификаторами и теперь можно приступать к повышению качества каталога автоматизировав присвоение тегов, тем и описаний каждому из них. Это, кстати, то для чего можно применить LLM почти наверняка.

Но это то что является disruptive change поскольку даже временные каталоги данных индексировались в Dateno и их переиндексирование и обновление поиска поменяет некоторые ссылки и в реестре [2] и для датасетов в будущем. Поэтому на самом поиске это отразится не раньше чем через какое-то время, не в ближайшем обновлении.

Реестр - это важная часть качества поиска Dateno поскольку характеристики каталога данных транслируются на датасеты. Если, к примеру, источник данных посвящён здравоохранению то и его параметры переносятся на наборы данных в нём проиндексированные. Это позволяет искать даже те датасеты которые которые своих метаданных имеют мало или почти не содержат. К примеру, почти все датасеты на серверах ArcGIS и Geoserver, но вот их обогащение почти невозможно проводить автоматически, потому на них нет описания содержания этих данных. Геокаталоги, не все, но многие, автоматически документируются довольно плохо. Их наличие делает Dateno одним из наиболее полных поисковиков по геоданным, но искать их сложно если только эти данные не описаны где-то ещё, например, в каталогах Geonetwork со ссылками на георесурсы.

Ссылки:
[1] https://github.com/commondataio/dataportals-registry/
[2] https://dateno.io/registry

#dateno #opendata #datasets
В рубрике закрытых в России данных открытые данные Государственного каталога музейного фонда [1] на портале открытых данных Минкультуры РФ не обновлялись с сентября 2023 года, почти полтора года.

В виде сайта эти данные доступны на goskatalog.ru [2] и, похоже, там эти данные обновляются поскольку количественно объектов там больше чем на портале открытых данных в этом датасете.

Это, конечно, печальное известие потому как с точки зрения организации доступа к данным именно этот ресурс Минкультуры был сделан лучшем чем большая часть порталов открытых данных в России. Печально если он окончательно помирает, впрочем новости там не публикуются с 2021 года, датасеты потихоньку исчезают, а теперь и не обновляются.

Ссылки:
[1] https://opendata.mkrf.ru/opendata/7705851331-museum-exhibits
[2] https://goskatalog.ru

#opendata #culture #russia #closeddata
Полезное чтение про данные, технологии и не только:
- Digitalizing sewage: The politics of producing, sharing, and operationalizing data from wastewater-based surveillance [1] оцифровка канализации и переходу к слежке через анализ сточных вод. Скрыто за пейволом, но тема важная, и активно развивающаяся. Годится для тем рассказов социальной фантастики про то как полиция выявляет убийц расчленителей и наркоманов, а медики больных по анализу сточных вод в реальном времени. Статья за пэйволом
- AI Is Bad News for the Global South [2] статья о том что ИИ для развивающихся стран не несёт ничего хорошего. Потому что английский язык, потому что gig-экономика включает многих из развивающихся стран, а теперь будет ИИ контент.
- The Access to Public Information: A Fundamental Right [3] книга Alejandra Soriano Diaz, о том что доступ к информации - это фундаментальное право и от него зависят другие права. Увы, книга не в открытом доступе,
- Kickstarting Collaborative, AI-Ready Datasets in the Life Sciences with Government-funded Projects [4] статья о том что государство должно активно софинансировать создание данных/датасетов в медицине и других life sciences. Там же ссылка на Open Dataset Initiative [5] создание открытых научных датасетов по запросу сообществ.

Ссылки:
[1] https://journals.sagepub.com/doi/abs/10.1177/23996544241313454
[2] https://foreignpolicy.com/2024/12/17/ai-global-south-inequality/
[3] https://www.cambridgescholars.com/product/978-1-0364-1521-1
[4] https://fas.org/publication/collaborative-datasets-life-sciences/
[5] https://alignbio.org/datasets-in-detail

#opendata #data #foi #readings #ai
Я ранее писал про некоторые каталоги данными с открытыми языковыми ресурсами и про испанский национальный проект по созданию языковых моделей и открытых датасетов, но этот пример далеко не единственный.

В рубрике как это устроено у них, создание открытых данных и языковых моделей в других странах.

Норвегия
- наборы данных и модели в AI-Lab при Национальной библиотеке страны [1]. Датасеты в parquet формате и модели публикуются сразу на платформе Hugging Face. Например, The Norwegian Colossal Corpus [2] датасет в 45ГБ на основе открытых текстов
- ресурсный каталог The Norwegian Language Bank [2] включает 1888 ресурсов, большая часть из которых открытые датасеты и открытый исходный код для работы с ними. Являются частью национального проекта CLARINO [3]

Финляндия
- каталог датасетов Национальной библиотеки Финляндии [4] включает метаданные, справочники, API и полнотекстовые датасеты на финском языке.
- также этот каталог, документация к API и дампы доступны в каталоге данных Национальной библиотеки [5] включая SPARQL и связанные данные в RDF
- есть официальное API [6] к Национальному каталогу культурных объектов Finna (объединение каталогов ведущих культурных организаций страны, аналог Europeana в ЕС или Trove в Австралии)

Австралия и Новая Зеландия
- GLAM-Workbench [7] проект Тима Шератта, историка и хакера, по систематизации всех онлайн датасетов и API Австралии и Новой Зеландии. Он получил несколько грантов за/на эту работу, собрал впечатляющее число ресурсов и огромное число тетрадок для Jupyter Notebook и создал множество датасетов и инструментов для работы с ними
- открытое API Trove [8] проекта Национальной библиотеки страны в партнерстве с сотнями культурных организаций по созданию единого каталога изображений, текстов, видео и других оцифрованных и digital-born материалов
- открытое API музея ACMI [9] посвящённого движущимся изображениям (видео и мультимедиа)

США
- открытое API у Библиотеки Конгресс [10], а также их многочисленные репозитории с открытыми данными [11] включая датасеты веб архивов за последние десятилетия [12]
- весь каталог национальных архивов США [13] и множество других датасетов большого объёма от Национальных архивного агентства США
- множество других источников и датасетов, чаще всего API музеев, библиотек и архивов

Сингапур
- коллекция наборов данных Национальной библиотеки Сингапура [14], по большей части метаданные, но охватывают большую часть коллекций. Публикуются все через национальный портал открытых данных страны data.gov.sg на постоянной основе

Ссылки:
[1] https://ai.nb.no/datasets/
[2] https://huggingface.co/datasets/NbAiLab/NCC
[3] https://www.nb.no/sprakbanken/en/resource-catalogue/
[4] https://www.kiwi.fi/display/Datacatalog/Data+sets
[5] https://data.nationallibrary.fi/
[6] https://api.finna.fi/swagger-ui/?url=%2Fapi%2Fv1%3Fswagger
[7] https://glam-workbench.net/
[8] https://trove.nla.gov.au/about/create-something/using-api
[9] https://www.acmi.net.au/api/
[10] https://www.loc.gov/apis/
[11] https://guides.loc.gov/datasets/repositories
[12] https://labs.loc.gov/work/experiments/webarchive-datasets/
[13] https://www.archives.gov/developer/national-archives-catalog-dataset
[14] https://www.nlb.gov.sg/main/discover-and-learn/discover-our-collections/national%20library%20datasets

#opendata #dataset #glam #openglam #datacatalogs
В последние дни уходящей администрации Байдена, 15 января OMB (Офис управления и бюджета США) выпустили [1] руководство по реализации OPEN Government Data Act [2] это документ с конкретными шагами и требованиями принятого 6 лет назад закона об открытости. Его ещё тогда подписал Трамп, а потом, по разным причинам команда Байдена тянула с ним до последнего и выпустили только сейчас.

Документ короткий, 32 страницы, привязан к контексту и законодательству США. На что можно обратить внимание:
- реализация принципа Open by default
- чёткий перечень причин по которым агентствам рекомендуется выбрать почему они публикуют данные. Там есть, например, развитие технологий ИИ и публикация данных для их обучения и улучшение воспроизводимости научных исследований. Ну и более популярных причин вроде пользы для общества тоже много
- нет жёстких рекомендаций по форматам, упоминают CSV, JSON и XML и то что любые другие машиночитаемые открытые форматы
- всё построено вокруг Federal Data Catalog и инвентаризации данных агентствами, результаты инвентаризации рассматриваются как data asset
- и, конечно, у каждого государственного агентства должен быть Open Data Plan, документ описывающий принципы и порядок раскрытия данных.

Документ выдержанный в правильных терминов открытых лицензий, стандартов, приоритетов и тд. Но, конечно, задержался он на 6 лет:)

Ссылки:
[1] https://www.nextgov.com/digital-government/2025/01/omb-issues-open-government-data-act-guidance-6-years-after-its-signing/402225/
[2] https://www.whitehouse.gov/wp-content/uploads/2025/01/M-25-05-Phase-2-Implementation-of-the-Foundations-for-Evidence-Based-Policymaking-Act-of-2018-Open-Government-Data-Access-and-Management-Guidance.pdf

#opendata #usa #government
zVRUz9MdbAr8FC4MOPDfsh07UgKAr8A6.pdf
571.5 KB
Свежая стратегия развития системы государственной статистики и Росстата до 2030 года с сайта Пр-ва РФ [1]. Там есть как хорошее, так и не очень. Я позже разберу его подробнее, а пока надеюсь найдутся те кто его проанализирует и изложит своё мнение.

Попыток реформировать статистику и Росстат было много, но я бы в российских реалиях сказал что успешность реформы зависит во многом от того какой политический вес будет иметь будущий глава Росстата. Пока Росстат остаётся "технической службой" зависящей от других ФОИВов и тд., без собственного голоса и влияния, мне трудно поверить в скорые качественные изменения.

Ссылки:
[1] http://government.ru/news/54008/

#opendata #regulation #russia #statistics
Я напомню что завтра с 16:30 до 18:00 веду семинар по Лучшим практикам использования DuckDB и Parquet для исследовательских данным в Институте Востоковедения РАН. Зарегистрироваться можно по ссылке https://ivran.ru/registraciya-na-seminar видео будет через какое-то время доступно.

Этот семинар будет с ориентацией на исследователей, но, по большей части, про технологии с живой демонстрацией на реальных данных. Для тех кто умеет SQL и командную строку хотя бы немного.

А буквально на следующий день, послезавтра, в 14:00 по Москве будет семинар в рамках проекта Дата среда https://dhri.timepad.ru/event/3195088/ где я буду рассказывать про пересечение дата инженерии и цифровой гуманитаристики. Здесь я про SQL и командную строку говорить не буду, но буду немало рассказывать про то где в цифровых гуманитарных проектах есть применение дата инженерии (и где нет).

В общем если хотите технологического погружения, то это завтра, а если понимания предметных областей то послезавтра. Неожиданно так получилось что эти два мероприятия оказались близко, но это и неплохо.

А к завтрашнему мероприятию, заодно, устрою небольшой опрос, следующим постом, о том на каких исследовательских данных делать демонстрацию.

#lectures #teaching #opendata
Незаметное, но существенное одно из последствий AI хайпа последних лет в том что некоммерческий проект независимого открытого поискового индекса Common Crawl в 2023 году привлек 1.3 миллиона долларов [1] пожертвований из которых $500 тыс от его основателя Gil Elbaz, а ещё по $250 тыс. от ИИ компаний OpenAI и Anthropic, $100 от Andreessen Horowitz и ещё $50 от DuckDuckGo.

Для сравнения, в 2022 году бюджет CC оставлял $450 тыс, а в 2020 всего $75 тысяч.

В последнее время Common Crawl используется для обучение LLM и их индекс неоднократно обвиняли в том что в нем содержатся материалы под копирайтом, а также в том что 40% проиндексированных текстов на английском языке.

Важнее то что весь их проект основан на экосистеме инструментов WARC и, кстати, DuckDB и файлов Parquet.

В планы на 2025 год они закладывали создание инструментов с открытым кодом для лучшего понимания их датасетов [3], что интересно поскольку инструментов визуализации и навигации по WARC файлам веб архивов явно нехватает.

Ссылки:
[1] https://commoncrawl.org
[2] https://projects.propublica.org/nonprofits/organizations/261635908
[3] https://commoncrawl.org/blog/august-september-2024-newsletter

#digitalpreservation #webarchives #opendata
По итогам вчерашней лекции зафиксирую ключевые тезисы о которых я пишу тут давно, но фрагментировано:

1. Формат Apache Parquet позволяет публиковать текущие крупные датасеты в виде пригодном для немедленной работы аналитиков, меньшего объёма и с лучшей структурой (типизацией содержимого). Это уже давний стандартизированный формат публикации данных пришедший из стека Apache и набравший популярность по мере роста популярности data science.

2. Apache Parquet не единственный такой формат, но один из наиболее популярных в последнее время. Он поддерживается почти всеми современными аналитическими инструментами работы с дата фреймами и аналитическими базами данных. Кроме него есть ещё и такие форматы публикации как ORC, Avro, значительно менее популярные, пока что.

3. В формате Apache Parquet уже публикуются данные раскрываемые госорганами. Его использует статслужба Малайзии, Правительство Франции, разработчики порталов открытых данных OpenDataSoft и многочисленные исследователи по всему миру. Почему они так делают? Потому что получают запрос от аналитиков, потому что это снижает стоимость хранения и обработки данных.

4. DuckDB - это один из наиболее ярких примеров стремительного удешевления работы с данными большого объёма на настольных компьютерах. Значимость его как инструмента именно в том что появляется возможность работы с данными условно в сотни гигабайт на недорогих устройствах. Например, работа с данными в сотни гигабайт на железе стоимостью до $1000.

5. Производительность DuckDB стремительно растёт. Рост от 3 до 25 раз для разных запросов и поддержка данных до 10 раз большего размера и это за 3 года с 2022 по 2024. Поэтому, хотя у DuckDB есть альтернативы - chDB, движки для дата фреймов такие как Polars, но важен потенциал развития.

6. Почему это важно для исследователей? У рядовых исследовательских команд не всегда есть возможность развертывания "тяжёлой инфраструктуры" или привлекать профессиональных дата аналитиков и дата инженеров. Чаще приходится работать на десктопах и не самых дорогих.

7. Почему это важно при публикации данных? Рассмотрим случай когда госорган, в нашем случае, Минкультуры РФ публикует каталог музейного фонда у себя на портале открытых данных. Сейчас это 11GB ZIP файл, разворачивающийся в 78GB файл в формате JSONS (на самом деле это NDJSON/JSON lines, из построчных записей в JSON). С этими данными всё ещё можно работать на десктопе, но пока скачаешь, пока распакуешь, это будет трудоёмко. Если бы Министерство сразу публиковало бы этот и другие датасеты в Parquet, то итоговый размер датасета был бы 2.7GB и работать с ним можно было бы немедленно, быстрее и удобнее.

8. Технологии дата инженерии и аналитики стремительно развиваются. Отстать можно очень быстро, например, многие только-только узнают про инструменты для дата фреймов вроде Pandas, а в то же время Pandas уже рассматривается как легаси потому что Pandas почти перестал развиваться, а заменяющие его движки Polars или Dask показывают значительно лучшую производительность.

9. Высокая конкуренция среди команд разработчиков СУБД. За ней можно наблюдать, например, через рейтинги производительности ClickBench где если не все то большая часть аналитических СУБД и через каталог СУБД в мире DBDB. Прямо сейчас происходящее называют золотым веком баз данных [и дата инженерии]. Причём развитие идёт в сторону повышения производительности на текущем оборудовании. А это значит что в ближайшем будущем будет ещё больший прогресс в том чтобы работать с данными большого объёма на недорогом оборудовании.

#opendata #opensource #datatools #data
Полезное чтение про данные, технологии и не только:
- TPC-H SF300 on a Raspberry Pi [1] бенчмарк TPC-H SF300 для DuckDB на Raspberri Pi с 16 GB RAM и 1TB SSD. TPC-H тест на двух базах в 26GB и 78GB. Самое главное, все стоимость всего всего этого железа $281.
- BuzzHouse: Bridging the database fuzzing gap for testing ClickHouse [2] в блоге ClickHouse об автоматизации тестирования запросов к ClickHouse. Автор создал и оформил 100+ issues выявленных таким автоматическим тестированием.
- Öppna data-portalen [3] портал открытых данных Шведского национального совета по культурному наследию. Все они геоданные в открытых форматах для возможности нанесения на карту.
- Pilot NIH Science of Science Scholars Program [4] национальный институт здравоохранения США запустил программу для исследователей по работе с их внутренними данными. Это те данные которые не могут быть открыты, но доступны с соблюдением требований безопасности, приватности, с оборудования предоставленного государством и тд. Ограничений немало, но и данные из тех что относят к особо чувствительным.
- LINDAS [5] официальный государственный портал связанных данных (Linked Data) Швейцарии. Создан и поддерживается Швейцарскими Федеральными Архивами. Включает 133 набора данных/базы данных
- Visualize Swiss Open Government Data [6] Швейцарская государственная платформа для визуализации данных. Да, по сути это как если бы к Datawrapper прикрутили каталог данных и придали бы всему государственный статус. Наборов данных там около 200 и, самое главное, всё с открытым кодом [6]

Ссылки:
[1] https://duckdb.org/2025/01/17/raspberryi-pi-tpch.html
[2] https://clickhouse.com/blog/buzzhouse-bridging-the-database-fuzzing-gap-for-testing-clickhouse
[3] https://www.raa.se/hitta-information/oppna-data/oppna-data-portal/
[4] https://dpcpsi.nih.gov/oepr/pilot-nih-science-science-scholars-program
[5] https://lindas.admin.ch/
[6] https://github.com/visualize-admin

#opendata #opensource #data #rdmbs #datatools