Ivan Begtin
9.36K subscribers
2.24K photos
4 videos
106 files
4.94K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and etc.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Email [email protected]

Ads/promotion agent: @k0shk
加入频道
Накопилось какое-то количество размышлений тезисами о том как файлы/документы публикуются и что с этим не так

[Не] Структурированный мир.

Огромная часть задач связанных с машинным обучением, LLM и тд. вокруг извлечения текстов и преобразования PDF документов. Чаще всего эти документы из областей жизни где они являлись нормой совсем недавно - научные статьи, патенты, гос. документы. Реже архивы. Но PDF файлы - это пример доминанты представления над содержанием. Когда в ущерб возможности работы с текстом и иным содержанием автоматизировано акцент сделан на точности визуального представления. А сейчас огромные технические ресурсы будут тратится (уже тратятся) на преобразование всего этого в машиночитаемый вид. Прорывов много, например, распознавание документов с помощью GPU чипов всё лучше, но не менее важно "заставить этот горшочек перестать варить".

Научные статьи не должны публиковаться в PDF, в PDF не должны публиковать информацию о патентах, однозначно в PDF не должна публиковаться статистика и так далее. Таких областей немало. Всё это должны заменить расширяемые, но строго специфицированные форматы предусматривающие машинную обработку. В научном мире постепенно приходят к формату data papers и в обязательные требования по публикации данных вместе со статьями. В мире статистики всё достаточно давно развивается в сторону SDMX, JSON Stat и ряда других стандартов.

Моё предсказание в том что мир гораздо быстрее побежит по направлению стандартизации представления много чего что сейчас собирается и публикуется в для чтения людьми, а не автоматизированными агентами. Появится ли когда-то глобальный реестр подобных рекомендуемых структур/схем/форматов?

Очень бы хотелось потому что это всё более актуальная задача. Про такие локальные инициативы я ранее писал, например, schema.data.gouv.fr для официальных данных во Франции и редко обновляющийся Schema.org заточенный под поиск Google.

#dataunderstanding #data
Полезные свежие научные статьи про работу с данными:
- Large Language Models for Data Discovery and Integration: Challenges and Opportunities - обзор подходов по обнаружению и интеграции данных с помощью LLM
- Unveiling Challenges for LLMs in Enterprise Data Engineering - оценка областей применения LLM в корпоративной дата инженерии
- Magneto: Combining Small and Large Language Models for Schema Matching - про одно из решений сопоставления схем через использование LLM и SLM
- Interactive Data Harmonization with LLM Agents - интерактивная гармонизация данных с помощью LLM агентов
- Towards Efficient Data Wrangling with LLMs using Code Generation - про автоматизацию обработки данных с помощью кодогенерирующих LLM

#readings #data
В рубрике как это устроено у них про порталы открытых данных и просто порталы с данными в США, я как-то писал что их очень много и то что собрано на data.gov - это капля в море. Я сейчас занимаюсь масштабным обновлением реестра Dateno используя ИИ агенты и как раз удалось улучшить идентификацию геопривязки к странам и территориям. Так что вот некоторые цифры на основе обновлённого реестра.

Всего в США каталогов данных: 2418 (это чуть менее 24% от всего зарегистрированных каталогов)
Среди них:
- 1720 каталогов геоданных
- 417 порталов открытых данных
- 227 научных репозиториев
и по мелочи остальных

Такое число каталогов геоданных поскольку к ним относятся все порталы данных в США на базе ArcGIS Hub, их 1196 и сервера с REST API ArcGIS, их 413

По типу владельца каталога данных:
- 1057 - это города и муниципалитеты (counties)
- 420 - исследовательские центры и университеты
- 368 - федеральные власти
- 332 - региональные власти

Оставшиеся относятся к коммерческим, общественным и международным.

Сейчас в реестре покрытие всех штатов в Dateno составляет 50 + 2 (50 штатов + округ Колумбия + Пуэрто Рико)

Более всего региональных и муниципальных порталов в Калифорнии, их 213. Следующим идёт Техас - 77 каталогов и далее Северная Каролина 65 каталогов.

Менее всего региональных каталогов данных в Южной Дакоте, там всего 1 сервер с ArcGIS.

Следующие по масштабам страны:
- Франция - 513 каталогов данных
- Великобритания - 448 каталогов данных
- Канада - 407 каталогов данных
- Германия - 397 каталогов данных

При этом надо оговориться что в Европе и в США каталогов данных может быть значительно больше, просто их поиск по муниципалитетам очень трудоёмок.

Для сравнения в России 167 каталогов данных из которых около 60 являются "номинальными", не обновлялись от 5 до 9 лет и содержат только мелкие административные данные.

Всё это, конечно, только про каталоги данных, а не про сами датасеты. По датасетам тоже лидируют США и Европа, это можно посмотреть в поиске на Dateno.io

Пишите если захотите какую-то интересную статистику которую можно подсчитать по индексу Dateno и, конечно, всегда можно воспользоваться утилитой datenocmd и API Dateno чтобы подсчитать интересную статистику по индексу.

#opendata #datasets #datasearch #usa #data
Для тех кто любит работать с открытыми данными свежий хакатон Data -> Sense от СберИндекса где прам-парам-парам будут муниципальные данные которые команда СберИндекса обещает дать на хакатон, а в будущем, очень надеюсь и предоставить как открытые данные.

Но, конечно, одними данными Сбербанка здесь можно и нужно не ограничиваться и это самая что не на есть супер возможность потренировать навыки аналитики, визуализации и работа с региональной экономической статистикой.

В том числе попробовать сделать AI помощника экономгеографа по российским данным.

К задачам которые есть на сайте я бы дополнительно добавил что-то вроде создания аналога DataCommons.org или DataUSA.io по российским региональным и муниципальным данным. Это посложнее на хакатон, но сложная и интересная задача.

#opendata #contests #ai #hackathons #data #economics #russia
В рубрике общедоступных, но малоизвестных данных в России.
- Веб-ГИС Климат [1] климатические карты от ИМЭКС СО РАН. В виде статических карт и приложенных к ним данных в формате NetCDF и архив данных, также, в формате NetCDF [2]
- Геопортал ИДСТУ СО РАН [3] портал с геоданными и спутниковыми снимками. Собственная разработка с открытым кодом [4] (правда код забросили лет 5 назад).
- Геопортал Новосибирска [5] на базе COGIS/eLiteGIS, похоже что совместимого с ArcGIS. Много слоёв данных по городу доступно через API
- Московские наборы данных [6] с портала ai.mos.ru. Говорить что они общедоступны нельзя, для доступа надо заполнить форму и получить разрешение. Потенциально хорошо что есть наборы данных которые госорганы в мире вообще не предоставляют, плохо то что нет условий использования и многое вообще должно быть открытыми данными, а не вот так.
- AARI WDC Sea-Ice [7] российский узел мирового центра данных (WDC) для наблюдений за Арктикой. Климатические научные данные за разные временные периоды

Ссылки:
[1] http://climate.scert.ru/
[2] http://climate.scert.ru/Environment/data/archive/
[3] https://geos.icc.ru
[4] https://gitlab.com/fromul/geoservices
[5] https://map.novo-sibirsk.ru/elitegis/rest/services/
[6] https://ai.mos.ru/datasets/?lang=RU
[7] http://wdc.aari.ru/

#opendata #russia #datasets #data #geodata #ai
Подборка ссылок про данные, технологии и не только

AI

- Transforming R&D with agentic AI: Introducing Microsoft Discovery о Microsoft Discovery, инструменте в виде агентского AI для исследователей. Акцент явно на практических исследованиях и сервисе для исследовательских центров и университетов.
- Spatial Speech Translation: Translating Across Space With Binaural Hearables научная статья про прогресс распознавания речи одновременно говорящих в толпе. Если всё сильно продвинется то тут столько возможностей для шпионского применения. Так и просится на страницы книги/рассказа про будущее.
- Claude Code SDK свежее SDK для генерации кода от Claude для тех кто хочет интегрировать Claude в свой продукт.

Открытый код
- Void альтернатива Cursor с открытым кодом. Пишут что поддерживают условно любую LLM, локальную или облачную. Форк VS Code.
- Marginalia Search - малоизвестный небольшой европейский поисковик авторы которого пытаются переосмыслить индексацию некоммерческой части интернета. Делают на небольшой европейский грант, открытый код AGPL. Любопытно, есть пара интересных идей, но нет хорошо продуманной стратегии.
- Scrapling свежая библиотека по "скрытному" парсингу сайтов. Интегрирована со всякими сервисами онлайн прокси, авторы обещают парсинг HTML быстрее чем у многих других инструментов. Выглядит полезно. Лицензия BSD-3
- Doctor инструмент для краулинга и индексации веб сайтов и предоставления собранного контента как MCP сервера. Можно сказать сайт-в-MCP. Внутри crawl4ai, DuckDB и Redis. Используют DuckDB как базу для векторного поиска, что немного необычно. Лицензия MIT
- VERT - конвертер изображений, видео, документов, аудио с открытым кодом и онлайн сервисом. Код под AGPL и веб интерфейс выглядит смазливо так что авторы явно нацелились на стартапо по модели онлайн сервис + открытый код. Плюс - работает без облака, через WebAssembly все преобразования идут на вашем компьютере. Это же и минус, потоковое преобразование сотен тысяч файлов не организовать.

#opensource #data #datatools #ai
К вопросу о российской статистике и доступных онлайн ресурсах. При архивации сайтов Росстата всплывают интересные артефакты, например, сайт mosag.rosstat.gov.ru с названием О портале Статистический портал Москвы и Московской агломерации

Я, честно говоря, вначале обрадовался и решил что именно там сейчас найдётся актуальная база статпоказателей, но нет.

Это оказался всего лишь BI портал, с годовыми показателями за 2010-2022 годы по Москве и Московской области, без муниципального деления.

Не то чтобы он совсем неживой, кое где есть данные за 2023 год, но за 2024 уже не найти и никакой ширины охвата там нет.

Архивации, он, разумеется, не поддаётся поскольку выгрузка данных там только интерактивная, а страницы BI порталов не архивируются.

Вспоминается анекдот о том что в продаже появились подделки ёлочных игрушек, выглядят как настоящие, но не радуют.

#opendata #data #statistics
В рубрике как это устроено у них портал данных Международной продовольственной программы (WFP) [1]

Включает данные климатического эксплорера где по большинстве стран можно узнать текущие и исторические данные по осадкам и другим климатическим данным.

Выглядит очень интересно и может быть полезно для тех кто анализирует гиперлокальные (муниципальные) данные поскольку по большинству стран мониторинг охватывает до второго административного уровня - муниципаоитетов, проще говоря.

С одним очень большим но... Это большое НО - это Россия. По России доступны только общестрановые данные, что для огромной страны кажется особенно странным. Нет даже данных по регионам, хотя на карте они все есть и у структур ООН есть данные о российских границах. Лично я, конечно, подозреваю с чем это связано.

Для примера, данные по районам Армении.

Ссылки:
[1] https://dataviz.vam.wfp.org

#opendata #dataviz #climate #data #russia
Полезное чтение про данные, технологии и не только:
- On file formats [1] автор систематизирует рекомендации тем кто придумывает собственные форматы файлов. Всё достаточно сжато и по делу.
- A deep dive into AlloyDB’s vector search enhancements [2] о применении векторного поиска и операций со ScanNN индексе в AlloyDB расширении для Postgres. О том как ИИ проникает в СУБД и там закрепляется.
- TrailBase [3] замена Firebase с открытым кодом
- LiamERD [4] красивые ERD диаграммы для ваших баз данных, с открытым кодом


Ссылки:
[1] https://solhsa.com/oldernews2025.html#ON-FILE-FORMATS
[2] https://cloud.google.com/blog/products/databases/alloydb-ais-scann-index-improves-search-on-all-kinds-of-data/
[3] https://github.com/trailbaseio/trailbase
[4] https://liambx.com/

#opensource #data #datatools
Для тех кто ищет российские муниципальные данные и не знает где найти, я ранее писал о некоторых очевидных и неочевидных их источниках, но их, конечно же, гораздо больше.

Вот тут пополнение списка, с данными по городам и районам:
- ДомКлик - https://blog.domclick.ru/analytics
- ВЭБ Индекс - https://citylifeindex.ru/database?pageType=CITIES
- Единое Хранилище Данных Москвы - https://ehd.moscow/
- Показатели жилищного строительства - https://наш.дом.рф/аналитика/показатели_жилищного_строительства

Кроме того в ЕМИСС (fedstat.ru) есть, как минимум, 101 индикатор которые охватывают города, только крупнейшие, но хотя бы так.

С некоторыми разумными усилиями эти данные могут быть связаны с данными Сбербанка на хакатоне Сбериндекса, на который ещё можно податься.

#opendata #hyperlocal #hackathons #data #datasets