Накопилось какое-то количество размышлений тезисами о том как файлы/документы публикуются и что с этим не так
[Не] Структурированный мир.
Огромная часть задач связанных с машинным обучением, LLM и тд. вокруг извлечения текстов и преобразования PDF документов. Чаще всего эти документы из областей жизни где они являлись нормой совсем недавно - научные статьи, патенты, гос. документы. Реже архивы. Но PDF файлы - это пример доминанты представления над содержанием. Когда в ущерб возможности работы с текстом и иным содержанием автоматизировано акцент сделан на точности визуального представления. А сейчас огромные технические ресурсы будут тратится (уже тратятся) на преобразование всего этого в машиночитаемый вид. Прорывов много, например, распознавание документов с помощью GPU чипов всё лучше, но не менее важно "заставить этот горшочек перестать варить".
Научные статьи не должны публиковаться в PDF, в PDF не должны публиковать информацию о патентах, однозначно в PDF не должна публиковаться статистика и так далее. Таких областей немало. Всё это должны заменить расширяемые, но строго специфицированные форматы предусматривающие машинную обработку. В научном мире постепенно приходят к формату data papers и в обязательные требования по публикации данных вместе со статьями. В мире статистики всё достаточно давно развивается в сторону SDMX, JSON Stat и ряда других стандартов.
Моё предсказание в том что мир гораздо быстрее побежит по направлению стандартизации представления много чего что сейчас собирается и публикуется в для чтения людьми, а не автоматизированными агентами. Появится ли когда-то глобальный реестр подобных рекомендуемых структур/схем/форматов?
Очень бы хотелось потому что это всё более актуальная задача. Про такие локальные инициативы я ранее писал, например, schema.data.gouv.fr для официальных данных во Франции и редко обновляющийся Schema.org заточенный под поиск Google.
#dataunderstanding #data
[Не] Структурированный мир.
Огромная часть задач связанных с машинным обучением, LLM и тд. вокруг извлечения текстов и преобразования PDF документов. Чаще всего эти документы из областей жизни где они являлись нормой совсем недавно - научные статьи, патенты, гос. документы. Реже архивы. Но PDF файлы - это пример доминанты представления над содержанием. Когда в ущерб возможности работы с текстом и иным содержанием автоматизировано акцент сделан на точности визуального представления. А сейчас огромные технические ресурсы будут тратится (уже тратятся) на преобразование всего этого в машиночитаемый вид. Прорывов много, например, распознавание документов с помощью GPU чипов всё лучше, но не менее важно "заставить этот горшочек перестать варить".
Научные статьи не должны публиковаться в PDF, в PDF не должны публиковать информацию о патентах, однозначно в PDF не должна публиковаться статистика и так далее. Таких областей немало. Всё это должны заменить расширяемые, но строго специфицированные форматы предусматривающие машинную обработку. В научном мире постепенно приходят к формату data papers и в обязательные требования по публикации данных вместе со статьями. В мире статистики всё достаточно давно развивается в сторону SDMX, JSON Stat и ряда других стандартов.
Моё предсказание в том что мир гораздо быстрее побежит по направлению стандартизации представления много чего что сейчас собирается и публикуется в для чтения людьми, а не автоматизированными агентами. Появится ли когда-то глобальный реестр подобных рекомендуемых структур/схем/форматов?
Очень бы хотелось потому что это всё более актуальная задача. Про такие локальные инициативы я ранее писал, например, schema.data.gouv.fr для официальных данных во Франции и редко обновляющийся Schema.org заточенный под поиск Google.
#dataunderstanding #data
schema.org
Schema.org - Schema.org
Schema.org is a set of extensible schemas that enables webmasters to embed
structured data on their web pages for use by search engines and other applications.
structured data on their web pages for use by search engines and other applications.
Полезные свежие научные статьи про работу с данными:
- Large Language Models for Data Discovery and Integration: Challenges and Opportunities - обзор подходов по обнаружению и интеграции данных с помощью LLM
- Unveiling Challenges for LLMs in Enterprise Data Engineering - оценка областей применения LLM в корпоративной дата инженерии
- Magneto: Combining Small and Large Language Models for Schema Matching - про одно из решений сопоставления схем через использование LLM и SLM
- Interactive Data Harmonization with LLM Agents - интерактивная гармонизация данных с помощью LLM агентов
- Towards Efficient Data Wrangling with LLMs using Code Generation - про автоматизацию обработки данных с помощью кодогенерирующих LLM
#readings #data
- Large Language Models for Data Discovery and Integration: Challenges and Opportunities - обзор подходов по обнаружению и интеграции данных с помощью LLM
- Unveiling Challenges for LLMs in Enterprise Data Engineering - оценка областей применения LLM в корпоративной дата инженерии
- Magneto: Combining Small and Large Language Models for Schema Matching - про одно из решений сопоставления схем через использование LLM и SLM
- Interactive Data Harmonization with LLM Agents - интерактивная гармонизация данных с помощью LLM агентов
- Towards Efficient Data Wrangling with LLMs using Code Generation - про автоматизацию обработки данных с помощью кодогенерирующих LLM
#readings #data
В рубрике как это устроено у них про порталы открытых данных и просто порталы с данными в США, я как-то писал что их очень много и то что собрано на data.gov - это капля в море. Я сейчас занимаюсь масштабным обновлением реестра Dateno используя ИИ агенты и как раз удалось улучшить идентификацию геопривязки к странам и территориям. Так что вот некоторые цифры на основе обновлённого реестра.
Всего в США каталогов данных: 2418 (это чуть менее 24% от всего зарегистрированных каталогов)
Среди них:
- 1720 каталогов геоданных
- 417 порталов открытых данных
- 227 научных репозиториев
и по мелочи остальных
Такое число каталогов геоданных поскольку к ним относятся все порталы данных в США на базе ArcGIS Hub, их 1196 и сервера с REST API ArcGIS, их 413
По типу владельца каталога данных:
- 1057 - это города и муниципалитеты (counties)
- 420 - исследовательские центры и университеты
- 368 - федеральные власти
- 332 - региональные власти
Оставшиеся относятся к коммерческим, общественным и международным.
Сейчас в реестре покрытие всех штатов в Dateno составляет 50 + 2 (50 штатов + округ Колумбия + Пуэрто Рико)
Более всего региональных и муниципальных порталов в Калифорнии, их 213. Следующим идёт Техас - 77 каталогов и далее Северная Каролина 65 каталогов.
Менее всего региональных каталогов данных в Южной Дакоте, там всего 1 сервер с ArcGIS.
Следующие по масштабам страны:
- Франция - 513 каталогов данных
- Великобритания - 448 каталогов данных
- Канада - 407 каталогов данных
- Германия - 397 каталогов данных
При этом надо оговориться что в Европе и в США каталогов данных может быть значительно больше, просто их поиск по муниципалитетам очень трудоёмок.
Для сравнения в России 167 каталогов данных из которых около 60 являются "номинальными", не обновлялись от 5 до 9 лет и содержат только мелкие административные данные.
Всё это, конечно, только про каталоги данных, а не про сами датасеты. По датасетам тоже лидируют США и Европа, это можно посмотреть в поиске на Dateno.io
Пишите если захотите какую-то интересную статистику которую можно подсчитать по индексу Dateno и, конечно, всегда можно воспользоваться утилитой datenocmd и API Dateno чтобы подсчитать интересную статистику по индексу.
#opendata #datasets #datasearch #usa #data
Всего в США каталогов данных: 2418 (это чуть менее 24% от всего зарегистрированных каталогов)
Среди них:
- 1720 каталогов геоданных
- 417 порталов открытых данных
- 227 научных репозиториев
и по мелочи остальных
Такое число каталогов геоданных поскольку к ним относятся все порталы данных в США на базе ArcGIS Hub, их 1196 и сервера с REST API ArcGIS, их 413
По типу владельца каталога данных:
- 1057 - это города и муниципалитеты (counties)
- 420 - исследовательские центры и университеты
- 368 - федеральные власти
- 332 - региональные власти
Оставшиеся относятся к коммерческим, общественным и международным.
Сейчас в реестре покрытие всех штатов в Dateno составляет 50 + 2 (50 штатов + округ Колумбия + Пуэрто Рико)
Более всего региональных и муниципальных порталов в Калифорнии, их 213. Следующим идёт Техас - 77 каталогов и далее Северная Каролина 65 каталогов.
Менее всего региональных каталогов данных в Южной Дакоте, там всего 1 сервер с ArcGIS.
Следующие по масштабам страны:
- Франция - 513 каталогов данных
- Великобритания - 448 каталогов данных
- Канада - 407 каталогов данных
- Германия - 397 каталогов данных
При этом надо оговориться что в Европе и в США каталогов данных может быть значительно больше, просто их поиск по муниципалитетам очень трудоёмок.
Для сравнения в России 167 каталогов данных из которых около 60 являются "номинальными", не обновлялись от 5 до 9 лет и содержат только мелкие административные данные.
Всё это, конечно, только про каталоги данных, а не про сами датасеты. По датасетам тоже лидируют США и Европа, это можно посмотреть в поиске на Dateno.io
Пишите если захотите какую-то интересную статистику которую можно подсчитать по индексу Dateno и, конечно, всегда можно воспользоваться утилитой datenocmd и API Dateno чтобы подсчитать интересную статистику по индексу.
#opendata #datasets #datasearch #usa #data
Dateno
Dateno - datasets search engine
A next-generation data search service provides fast, comprehensive access to open datasets worldwide, with powerful filters and an API-first architecture for seamless integration.
Для тех кто любит работать с открытыми данными свежий хакатон Data -> Sense от СберИндекса где прам-парам-парам будут муниципальные данные которые команда СберИндекса обещает дать на хакатон, а в будущем, очень надеюсь и предоставить как открытые данные.
Но, конечно, одними данными Сбербанка здесь можно и нужно не ограничиваться и это самая что не на есть супер возможность потренировать навыки аналитики, визуализации и работа с региональной экономической статистикой.
В том числе попробовать сделать AI помощника экономгеографа по российским данным.
К задачам которые есть на сайте я бы дополнительно добавил что-то вроде создания аналога DataCommons.org или DataUSA.io по российским региональным и муниципальным данным. Это посложнее на хакатон, но сложная и интересная задача.
#opendata #contests #ai #hackathons #data #economics #russia
Но, конечно, одними данными Сбербанка здесь можно и нужно не ограничиваться и это самая что не на есть супер возможность потренировать навыки аналитики, визуализации и работа с региональной экономической статистикой.
В том числе попробовать сделать AI помощника экономгеографа по российским данным.
К задачам которые есть на сайте я бы дополнительно добавил что-то вроде создания аналога DataCommons.org или DataUSA.io по российским региональным и муниципальным данным. Это посложнее на хакатон, но сложная и интересная задача.
#opendata #contests #ai #hackathons #data #economics #russia
В рубрике общедоступных, но малоизвестных данных в России.
- Веб-ГИС Климат [1] климатические карты от ИМЭКС СО РАН. В виде статических карт и приложенных к ним данных в формате NetCDF и архив данных, также, в формате NetCDF [2]
- Геопортал ИДСТУ СО РАН [3] портал с геоданными и спутниковыми снимками. Собственная разработка с открытым кодом [4] (правда код забросили лет 5 назад).
- Геопортал Новосибирска [5] на базе COGIS/eLiteGIS, похоже что совместимого с ArcGIS. Много слоёв данных по городу доступно через API
- Московские наборы данных [6] с портала ai.mos.ru. Говорить что они общедоступны нельзя, для доступа надо заполнить форму и получить разрешение. Потенциально хорошо что есть наборы данных которые госорганы в мире вообще не предоставляют, плохо то что нет условий использования и многое вообще должно быть открытыми данными, а не вот так.
- AARI WDC Sea-Ice [7] российский узел мирового центра данных (WDC) для наблюдений за Арктикой. Климатические научные данные за разные временные периоды
Ссылки:
[1] http://climate.scert.ru/
[2] http://climate.scert.ru/Environment/data/archive/
[3] https://geos.icc.ru
[4] https://gitlab.com/fromul/geoservices
[5] https://map.novo-sibirsk.ru/elitegis/rest/services/
[6] https://ai.mos.ru/datasets/?lang=RU
[7] http://wdc.aari.ru/
#opendata #russia #datasets #data #geodata #ai
- Веб-ГИС Климат [1] климатические карты от ИМЭКС СО РАН. В виде статических карт и приложенных к ним данных в формате NetCDF и архив данных, также, в формате NetCDF [2]
- Геопортал ИДСТУ СО РАН [3] портал с геоданными и спутниковыми снимками. Собственная разработка с открытым кодом [4] (правда код забросили лет 5 назад).
- Геопортал Новосибирска [5] на базе COGIS/eLiteGIS, похоже что совместимого с ArcGIS. Много слоёв данных по городу доступно через API
- Московские наборы данных [6] с портала ai.mos.ru. Говорить что они общедоступны нельзя, для доступа надо заполнить форму и получить разрешение. Потенциально хорошо что есть наборы данных которые госорганы в мире вообще не предоставляют, плохо то что нет условий использования и многое вообще должно быть открытыми данными, а не вот так.
- AARI WDC Sea-Ice [7] российский узел мирового центра данных (WDC) для наблюдений за Арктикой. Климатические научные данные за разные временные периоды
Ссылки:
[1] http://climate.scert.ru/
[2] http://climate.scert.ru/Environment/data/archive/
[3] https://geos.icc.ru
[4] https://gitlab.com/fromul/geoservices
[5] https://map.novo-sibirsk.ru/elitegis/rest/services/
[6] https://ai.mos.ru/datasets/?lang=RU
[7] http://wdc.aari.ru/
#opendata #russia #datasets #data #geodata #ai
GitLab
Roman Fedorov / geoservices · GitLab
Подборка ссылок про данные, технологии и не только
AI
- Transforming R&D with agentic AI: Introducing Microsoft Discovery о Microsoft Discovery, инструменте в виде агентского AI для исследователей. Акцент явно на практических исследованиях и сервисе для исследовательских центров и университетов.
- Spatial Speech Translation: Translating Across Space With Binaural Hearables научная статья про прогресс распознавания речи одновременно говорящих в толпе. Если всё сильно продвинется то тут столько возможностей для шпионского применения. Так и просится на страницы книги/рассказа про будущее.
- Claude Code SDK свежее SDK для генерации кода от Claude для тех кто хочет интегрировать Claude в свой продукт.
Открытый код
- Void альтернатива Cursor с открытым кодом. Пишут что поддерживают условно любую LLM, локальную или облачную. Форк VS Code.
- Marginalia Search - малоизвестный небольшой европейский поисковик авторы которого пытаются переосмыслить индексацию некоммерческой части интернета. Делают на небольшой европейский грант, открытый код AGPL. Любопытно, есть пара интересных идей, но нет хорошо продуманной стратегии.
- Scrapling свежая библиотека по "скрытному" парсингу сайтов. Интегрирована со всякими сервисами онлайн прокси, авторы обещают парсинг HTML быстрее чем у многих других инструментов. Выглядит полезно. Лицензия BSD-3
- Doctor инструмент для краулинга и индексации веб сайтов и предоставления собранного контента как MCP сервера. Можно сказать сайт-в-MCP. Внутри crawl4ai, DuckDB и Redis. Используют DuckDB как базу для векторного поиска, что немного необычно. Лицензия MIT
- VERT - конвертер изображений, видео, документов, аудио с открытым кодом и онлайн сервисом. Код под AGPL и веб интерфейс выглядит смазливо так что авторы явно нацелились на стартапо по модели онлайн сервис + открытый код. Плюс - работает без облака, через WebAssembly все преобразования идут на вашем компьютере. Это же и минус, потоковое преобразование сотен тысяч файлов не организовать.
#opensource #data #datatools #ai
AI
- Transforming R&D with agentic AI: Introducing Microsoft Discovery о Microsoft Discovery, инструменте в виде агентского AI для исследователей. Акцент явно на практических исследованиях и сервисе для исследовательских центров и университетов.
- Spatial Speech Translation: Translating Across Space With Binaural Hearables научная статья про прогресс распознавания речи одновременно говорящих в толпе. Если всё сильно продвинется то тут столько возможностей для шпионского применения. Так и просится на страницы книги/рассказа про будущее.
- Claude Code SDK свежее SDK для генерации кода от Claude для тех кто хочет интегрировать Claude в свой продукт.
Открытый код
- Void альтернатива Cursor с открытым кодом. Пишут что поддерживают условно любую LLM, локальную или облачную. Форк VS Code.
- Marginalia Search - малоизвестный небольшой европейский поисковик авторы которого пытаются переосмыслить индексацию некоммерческой части интернета. Делают на небольшой европейский грант, открытый код AGPL. Любопытно, есть пара интересных идей, но нет хорошо продуманной стратегии.
- Scrapling свежая библиотека по "скрытному" парсингу сайтов. Интегрирована со всякими сервисами онлайн прокси, авторы обещают парсинг HTML быстрее чем у многих других инструментов. Выглядит полезно. Лицензия BSD-3
- Doctor инструмент для краулинга и индексации веб сайтов и предоставления собранного контента как MCP сервера. Можно сказать сайт-в-MCP. Внутри crawl4ai, DuckDB и Redis. Используют DuckDB как базу для векторного поиска, что немного необычно. Лицензия MIT
- VERT - конвертер изображений, видео, документов, аудио с открытым кодом и онлайн сервисом. Код под AGPL и веб интерфейс выглядит смазливо так что авторы явно нацелились на стартапо по модели онлайн сервис + открытый код. Плюс - работает без облака, через WebAssembly все преобразования идут на вашем компьютере. Это же и минус, потоковое преобразование сотен тысяч файлов не организовать.
#opensource #data #datatools #ai
К вопросу о российской статистике и доступных онлайн ресурсах. При архивации сайтов Росстата всплывают интересные артефакты, например, сайт mosag.rosstat.gov.ru с названием О портале Статистический портал Москвы и Московской агломерации
Я, честно говоря, вначале обрадовался и решил что именно там сейчас найдётся актуальная база статпоказателей, но нет.
Это оказался всего лишь BI портал, с годовыми показателями за 2010-2022 годы по Москве и Московской области, без муниципального деления.
Не то чтобы он совсем неживой, кое где есть данные за 2023 год, но за 2024 уже не найти и никакой ширины охвата там нет.
Архивации, он, разумеется, не поддаётся поскольку выгрузка данных там только интерактивная, а страницы BI порталов не архивируются.
Вспоминается анекдот о том что в продаже появились подделки ёлочных игрушек, выглядят как настоящие, но не радуют.
#opendata #data #statistics
Я, честно говоря, вначале обрадовался и решил что именно там сейчас найдётся актуальная база статпоказателей, но нет.
Это оказался всего лишь BI портал, с годовыми показателями за 2010-2022 годы по Москве и Московской области, без муниципального деления.
Не то чтобы он совсем неживой, кое где есть данные за 2023 год, но за 2024 уже не найти и никакой ширины охвата там нет.
Архивации, он, разумеется, не поддаётся поскольку выгрузка данных там только интерактивная, а страницы BI порталов не архивируются.
Вспоминается анекдот о том что в продаже появились подделки ёлочных игрушек, выглядят как настоящие, но не радуют.
#opendata #data #statistics
В рубрике как это устроено у них портал данных Международной продовольственной программы (WFP) [1]
Включает данные климатического эксплорера где по большинстве стран можно узнать текущие и исторические данные по осадкам и другим климатическим данным.
Выглядит очень интересно и может быть полезно для тех кто анализирует гиперлокальные (муниципальные) данные поскольку по большинству стран мониторинг охватывает до второго административного уровня - муниципаоитетов, проще говоря.
С одним очень большим но... Это большое НО - это Россия. По России доступны только общестрановые данные, что для огромной страны кажется особенно странным. Нет даже данных по регионам, хотя на карте они все есть и у структур ООН есть данные о российских границах. Лично я, конечно, подозреваю с чем это связано.
Для примера, данные по районам Армении.
Ссылки:
[1] https://dataviz.vam.wfp.org
#opendata #dataviz #climate #data #russia
Включает данные климатического эксплорера где по большинстве стран можно узнать текущие и исторические данные по осадкам и другим климатическим данным.
Выглядит очень интересно и может быть полезно для тех кто анализирует гиперлокальные (муниципальные) данные поскольку по большинству стран мониторинг охватывает до второго административного уровня - муниципаоитетов, проще говоря.
С одним очень большим но... Это большое НО - это Россия. По России доступны только общестрановые данные, что для огромной страны кажется особенно странным. Нет даже данных по регионам, хотя на карте они все есть и у структур ООН есть данные о российских границах. Лично я, конечно, подозреваю с чем это связано.
Для примера, данные по районам Армении.
Ссылки:
[1] https://dataviz.vam.wfp.org
#opendata #dataviz #climate #data #russia
Полезное чтение про данные, технологии и не только:
- On file formats [1] автор систематизирует рекомендации тем кто придумывает собственные форматы файлов. Всё достаточно сжато и по делу.
- A deep dive into AlloyDB’s vector search enhancements [2] о применении векторного поиска и операций со ScanNN индексе в AlloyDB расширении для Postgres. О том как ИИ проникает в СУБД и там закрепляется.
- TrailBase [3] замена Firebase с открытым кодом
- LiamERD [4] красивые ERD диаграммы для ваших баз данных, с открытым кодом
Ссылки:
[1] https://solhsa.com/oldernews2025.html#ON-FILE-FORMATS
[2] https://cloud.google.com/blog/products/databases/alloydb-ais-scann-index-improves-search-on-all-kinds-of-data/
[3] https://github.com/trailbaseio/trailbase
[4] https://liambx.com/
#opensource #data #datatools
- On file formats [1] автор систематизирует рекомендации тем кто придумывает собственные форматы файлов. Всё достаточно сжато и по делу.
- A deep dive into AlloyDB’s vector search enhancements [2] о применении векторного поиска и операций со ScanNN индексе в AlloyDB расширении для Postgres. О том как ИИ проникает в СУБД и там закрепляется.
- TrailBase [3] замена Firebase с открытым кодом
- LiamERD [4] красивые ERD диаграммы для ваших баз данных, с открытым кодом
Ссылки:
[1] https://solhsa.com/oldernews2025.html#ON-FILE-FORMATS
[2] https://cloud.google.com/blog/products/databases/alloydb-ais-scann-index-improves-search-on-all-kinds-of-data/
[3] https://github.com/trailbaseio/trailbase
[4] https://liambx.com/
#opensource #data #datatools
Google Cloud Blog
AlloyDB AI’s ScaNN index improves search on all kinds of data | Google Cloud Blog
Recent innovations in AlloyDB AI’s ScaNN index improve performance and quality of search over structured and unstructured data.
Для тех кто ищет российские муниципальные данные и не знает где найти, я ранее писал о некоторых очевидных и неочевидных их источниках, но их, конечно же, гораздо больше.
Вот тут пополнение списка, с данными по городам и районам:
- ДомКлик - https://blog.domclick.ru/analytics
- ВЭБ Индекс - https://citylifeindex.ru/database?pageType=CITIES
- Единое Хранилище Данных Москвы - https://ehd.moscow/
- Показатели жилищного строительства - https://наш.дом.рф/аналитика/показатели_жилищного_строительства
Кроме того в ЕМИСС (fedstat.ru) есть, как минимум, 101 индикатор которые охватывают города, только крупнейшие, но хотя бы так.
С некоторыми разумными усилиями эти данные могут быть связаны с данными Сбербанка на хакатоне Сбериндекса, на который ещё можно податься.
#opendata #hyperlocal #hackathons #data #datasets
Вот тут пополнение списка, с данными по городам и районам:
- ДомКлик - https://blog.domclick.ru/analytics
- ВЭБ Индекс - https://citylifeindex.ru/database?pageType=CITIES
- Единое Хранилище Данных Москвы - https://ehd.moscow/
- Показатели жилищного строительства - https://наш.дом.рф/аналитика/показатели_жилищного_строительства
Кроме того в ЕМИСС (fedstat.ru) есть, как минимум, 101 индикатор которые охватывают города, только крупнейшие, но хотя бы так.
С некоторыми разумными усилиями эти данные могут быть связаны с данными Сбербанка на хакатоне Сбериндекса, на который ещё можно податься.
#opendata #hyperlocal #hackathons #data #datasets