Ivan Begtin
8.01K subscribers
1.94K photos
3 videos
101 files
4.64K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts [email protected]
加入频道
Net Zero Challenge [1] конкурс питчей проектов и идей по использованию открытых данных в борьбе с изменением климата от Open Knowledge Foundation [2].

Поддержку конкурсу оказывают Microsoft и МИД Великобритании (UK Foreign, Commonwealth & Development Office)

Призы до $1000, то есть, проект явно нацелен на отдельных разработчиков и активистов, а не на организации. Правда, сумма, прямо скажем, совсем не велика и скорее он нацелен на активистов в развивающихся странах. И на тех кто хочет добавить международного признания и ещё немного денег для своих уже созданных проектов.

Ссылки:
[1] https://www.netzerochallenge.info/
[2] https://blog.okfn.org/2021/01/28/launching-the-net-zero-challenge-a-global-pitch-competition-about-using-open-data-for-climate-action/

#opendata #climate
Forwarded from APICrafter
Большое обновление в данных DataCrafter'а. В каталог загружены 1514 наборов данных о климате и погоде из Единой государственной системы информации об обстановке в Мировом океане (ЕСИМО). Все данные были преобразованы в унифицированные форматы и доступны в каталоге как открытые данные через API или в виде сборок/слепков данных.

Данные загружены вместе с описанием каждого поля, сведения доступны в разделе "Документация" к каждой таблице. Например, документация к набору данных Оперативные данные о сопутствующих метеонаблюдениях, передаваемых по коду FM-18 X BUOY. Период хранения в БД.

Несмотря на то что многие данные в системе ЕСИМО являются архивными, они могут пригодиться исследователям работающим с данными о мировом океане, климатологам, специалистам по работе с погодными данными и данными экономики моря.

Для нас загрузка такого числа наборов данных оказалась вызовом по причине числа наборов данных, всё таки 1514 наборов из системы ЕСИМО - это почти в 4 раза больше 393 наборов данных которые ранее к нам были загружены и сейчас интерфейс уже недостаточно удобен для работы с таким числом наборов данных, но мы уже работаем над его доработкой.

Второй вызов был в том что данные имеют свою специфику и текущие алгоритмы распознавания типов данных определяют типы данных наборов данных из ЕСИМО достаточно ограниченно. В ближайшее время начнётся работа по классификации этих полей и доработке алгоритмов под эту задачу.

#datasets #esimo #climate #weather #datacrafter #data
Для рубрике "особо крупные наборы данных", в AWS Open Data свежий набор данных в 500ТБ моделирования атмосферы [1] созданный US National Center for Atmospheric Research в партнерстве с IBS Center for Climate Physics in South Korea. Это данные симуляций сценариев CMIP6 и SSP370 изменения климата [2]. К набору данных есть более подробное описание [3] и, конечно, не стоит пытаться работать с ним в домашних условиях - данные реально большого объёма под большие исследовательские задачи.

Ссылки:
[1] https://registry.opendata.aws/ncar-cesm2-lens/
[2] https://www.dkrz.de/en/communication/climate-simulations/cmip6-en/the-ssp-scenarios
[3] https://ncar.github.io/cesm2-le-aws/model_documentation.html

#climate #datasets #opendata #data
Тем временем как минимум с прошлого года идёт большая кампания [1] по поводу раскрытия данных Международным энергетическим агенством (IEA) и 6 января они анонсировали что предложение по раскрытию данных внутри агентства было прдставлено совету директоров [2] что уже большой прогресс и даёт надежду что данные будут раскрываться.

Почему это важно? IEA собирает данные от всех развитых и большей части развивающихся стран, сотен энергетических компаний по всему миру. Исследователям эти данные неоходимы для принятия решений и анализа влияния энергопроизводства человечества на климат и изменения климата.

Почему это не так просто? Потому что данные передаваемые в IEA часто не раскрываются на национальном и корпоративном уровне и рассматриваются как данные ограниченного использования и корпоративные тайны.

Многие организации направили открытые письма в IEA с запросом ускорить процесс открытия и данных [3] и есть некоторая надежда что это произойдет.

А у нас появятся новые интересные данные для серьёзного и не очень серьёзного анализа.

Ссылки:
[1] https://ourworldindata.org/free-data-iea
[2] https://www.qcintel.com/article/correction-iea-proposes-to-make-all-its-data-freely-available-3540.html
[3] https://thebreakthrough.org/blog/urge-iea-to-make-energy-data-free

#opendata #iea #energy #climate #climatechange
В рубрике как это устроено у них специализированные OpenDAP Hyrax порталы для публикации океанографических и климатических данных. Развивается одноимённой НКО [1], изначально создано в научных центрах NOAA и поддерживается 3-мя агентствами в США: NOAA, NSF и NASA, а также Австралийским метеорологическим бюро.

Поддерживает множество стандартов публикации данных таких как HDF4, HDF5, NetCDF3, NetCDF4, FITS, NcML, THREDDS и другие.

Применяется, как минимум, в паре десятков проектов связанных с данными об океанах и климате по всему миру. Например:
- http://servdap.legi.grenoble-inp.fr/opendap/hyrax/
- https://ladsweb.modaps.eosdis.nasa.gov/opendap/hyrax/
- https://ppdb.us.edu.pl/opendap/

Как правило, раскрываемые в этих серверах данные большого объёма, по несколько терабайт на каждой инсталляции и содержат преимущественно численные значения.

Другие продукты в этой области это ERDDAP [2] и THREDDS Data Server (TDS) [3], также имеют только это узкое применение.

В принципе особенность развития работы с данными в климатологии и наук о Земле в наличие большого числа каталогов данных, открытых данных, но по собственным стандартам, в специализированном ПО, не пересекающимися, ни с наиболее популярными инструментами в data science, ни с открытыми данными.

Ссылки:
[1] https://www.opendap.org
[2] https://www.ncei.noaa.gov/erddap/index.html
[3] https://www.unidata.ucar.edu/software/tds/

#opendata #climate #meteorology #datacatalogs #thredds #opendap
Forwarded from Open Data Armenia
[RU] Больше открытых данных об Армении. На сайте Всемирного метеорологического агентства World Weather Information Service [1] публикуются данные прогноза погоды по 3467 городам мира [2] включая станции мониторинга прогноза погоды по Армении.

Данные доступны в виде страниц городов и могут быть выгружены с сайта в машиночитаемых форматах:
- Ереван https://worldweather.wmo.int/en/json/66_en.json
- Севан https://worldweather.wmo.int/en/json/68_en.json
- Капан https://worldweather.wmo.int/en/json/69_en.json
- Ванадзор https://worldweather.wmo.int/en/json/67_en.json
- Дилижан https://worldweather.wmo.int/en/json/2079_en.json
- Джермук https://worldweather.wmo.int/en/json/2080_en.json

Полный список городов включает идентификаторы [2] по которым можно получить данные используя документацию API на сайте [3].

[EN] More open data about Armenia. The World Weather Information Service [1] website of the World Meteorological Agency [1] publishes weather forecast data for 3467 cities of the world [2] including weather forecast monitoring stations for Armenia.

The data are available as city pages and can be downloaded from the site in machine-readable formats:
- Yerevan https://worldweather.wmo.int/en/json/66_en.json
- Sevan https://worldweather.wmo.int/en/json/68_en.json
- Kapan https://worldweather.wmo.int/en/json/69_en.json
- Vanadzor https://worldweather.wmo.int/en/json/67_en.json
- Dilijan https://worldweather.wmo.int/en/json/2079_en.json
- Jermuk https://worldweather.wmo.int/en/json/2080_en.json

The full list of cities includes identifiers [2] for which data can be retrieved using the API documentation on the website [3].

Links:
[1] https://worldweather.wmo.int
[2] https://worldweather.wmo.int/en/json/full_city_list.txt
[3] https://worldweather.wmo.int/en/dataguide.html

#opendata #armenia #climate #meteorology
Свежая AI модель предсказания погоды от NASA и IBM [1] причём модель обучена была на множестве GPU, а запустить её можно на настольном компьютере.

Причём модель эта была построена на базе датасета MERRA-2 [2] с более чем 40 годами наблюдения за Землёй

Ссылки:
[1] https://research.ibm.com/blog/foundation-model-weather-climate
[2] https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

#opendata #datasets #data #climate #ai
Продолжая тему данных о климате и наблюдении за океанами и морями, проект SeaDataNet [1] пан-Европейская инициатива по упрощению доступа к данным морских исследований. Включает поиск по более чем 3 миллионам наборам данных [2] которые являются пробами, наблюдениями и так далее.

Большая часть данных происходит из Франции, более 1.1 миллиона записей, но много данных и из России, порядка 182 тысяч записей.

Данные есть из практически всех европейских и многих околоевропейских стран с выходом к морю. Поэтому данные, к примеру, из Грузии есть, а из Армении нет.

Почти все данные под лицензией Creative Commons, но для доступа нужна регистрация.

Это другой пример очень специфических отраслевых данных, можно обратить внимание что поиск по ним по собственным уникальным фильтрам таким как: морской регион, координаты, научная дисциплина, способ получения данных и так далее.

Привязка данных связана скорее с географическим положением, чем с административными границами.

Ссылки:
[1] https://www.seadatanet.org/
[2] https://cdi.seadatanet.org/search

#opendata #climate #oceans #europe #datacatalogs #datasearch