Полезное чтение про данные, технологии и не только:
- Chart Smarter, Not Harder: Plotly Now Offers Universal DataFrame Support [1] о том как разработчики движка визуализации Plotly многократно ускорили визуализацию графиков используя библиотеку Narwhals поверх Polars и pyArrow. Познавательные цифры и опыт для тех кто сталкивается с медленной отрисовкой графиков.
- Siyuan [2] персональная система управления знаниями и заметками. Китайский аналог Notion и Obsidian. Открытый код под AGPL, бесплатно для личного использования. Много интеграции в китайскую экосистему вроде WeChat и тд
- Requestly [3] расширение для браузера, прокси, для перехвата запросов. Необходимо всем разработчикам работающим с API. Открытый код под AGPL и онлайн сервис за деньги. По сути конкурент Postman
- Maxun [4] ещё один no-code инструмент для скрейпинга сайтов. Облегчает жизнь тем кто не хочет кодировать то что можно не кодировать. Открытый код, AGPL
- VeilStream [5] для разнообразия не вполне обычный коммерческий сервис, прокси для PostgreSQL который принимает запросы от пользователей, а ответы отдаёт отфильтрованными от персональных данных. Меня не покидает ощущение что это несколько, ммм, извращённое решение, но тем не менее. Оно есть и, видимо, кто-то его покупает.
- 10 Ways to Work with Large Files in Python: Effortlessly Handle Gigabytes of Data! [6] статья полностью для джунов, но именно джунам её прочитать обязательно. Там есть небольшая реклама Dask и игнорирование Polars, DuckDB и тд. А если говорить серьёзно, то всё зависит от того какие у тебя большие данные, в каком они состоянии и что с ними планируется делать. К примеру, обработка десятков и сотен гигабайт бинарных данных происходит иначе.
- Python Rgonomics 2025 [7] материал о том как работать в Python тем кто учил R. Полезное чтение для тех кто живёт в двух мирах или переходит с R на Python.
Ссылки:
[1] https://plotly.com/blog/chart-smarter-not-harder-universal-dataframe-support/
[2] https://github.com/siyuan-note/siyuan
[3] https://github.com/requestly/requestly
[4] https://github.com/getmaxun/maxun
[5] https://www.veilstream.com/
[6] https://blog.devgenius.io/10-ways-to-work-with-large-files-in-python-effortlessly-handle-gigabytes-of-data-aeef19bc0429
[7] https://www.emilyriederer.com/post/py-rgo-2025/
#readings #opensource #data #datatools
- Chart Smarter, Not Harder: Plotly Now Offers Universal DataFrame Support [1] о том как разработчики движка визуализации Plotly многократно ускорили визуализацию графиков используя библиотеку Narwhals поверх Polars и pyArrow. Познавательные цифры и опыт для тех кто сталкивается с медленной отрисовкой графиков.
- Siyuan [2] персональная система управления знаниями и заметками. Китайский аналог Notion и Obsidian. Открытый код под AGPL, бесплатно для личного использования. Много интеграции в китайскую экосистему вроде WeChat и тд
- Requestly [3] расширение для браузера, прокси, для перехвата запросов. Необходимо всем разработчикам работающим с API. Открытый код под AGPL и онлайн сервис за деньги. По сути конкурент Postman
- Maxun [4] ещё один no-code инструмент для скрейпинга сайтов. Облегчает жизнь тем кто не хочет кодировать то что можно не кодировать. Открытый код, AGPL
- VeilStream [5] для разнообразия не вполне обычный коммерческий сервис, прокси для PostgreSQL который принимает запросы от пользователей, а ответы отдаёт отфильтрованными от персональных данных. Меня не покидает ощущение что это несколько, ммм, извращённое решение, но тем не менее. Оно есть и, видимо, кто-то его покупает.
- 10 Ways to Work with Large Files in Python: Effortlessly Handle Gigabytes of Data! [6] статья полностью для джунов, но именно джунам её прочитать обязательно. Там есть небольшая реклама Dask и игнорирование Polars, DuckDB и тд. А если говорить серьёзно, то всё зависит от того какие у тебя большие данные, в каком они состоянии и что с ними планируется делать. К примеру, обработка десятков и сотен гигабайт бинарных данных происходит иначе.
- Python Rgonomics 2025 [7] материал о том как работать в Python тем кто учил R. Полезное чтение для тех кто живёт в двух мирах или переходит с R на Python.
Ссылки:
[1] https://plotly.com/blog/chart-smarter-not-harder-universal-dataframe-support/
[2] https://github.com/siyuan-note/siyuan
[3] https://github.com/requestly/requestly
[4] https://github.com/getmaxun/maxun
[5] https://www.veilstream.com/
[6] https://blog.devgenius.io/10-ways-to-work-with-large-files-in-python-effortlessly-handle-gigabytes-of-data-aeef19bc0429
[7] https://www.emilyriederer.com/post/py-rgo-2025/
#readings #opensource #data #datatools
Plotly
Chart Smarter, Not Harder: Plotly Now Offers Universal DataFrame Support
Learn how you can boost Dash data app performance with the new Plotly.py collaboration with Narwhals, a dataframe compatibility layer.
AI и политика
Dario Amodei, CEO стартапа Anthropic, создателей LLM моделей Claude, написал в блоге [1] призыв к ужесточению экспортного контроля США за чипами для обучения ИИ. Дословно это звучит как Export controls serve a vital purpose: keeping democratic nations at the forefront of AI development. У него под постом в твиттере развернулась большая полемика с теми кто против ограничений на развитие ИИ [2]. Большая часть комментариев звучит как при всём уважении к Вашей команде, но DeepSeek молодцы и развивать ИИ модели с открытым кодом важно.
Разработка ИИ стремительно политизируется вместе с демократизацией ИИ инструментов.
Ссылки:
[1] https://darioamodei.com/on-deepseek-and-export-controls
[2] https://x.com/DarioAmodei/status/1884636410839535967
#ai #opensource #deepseek #llm
Dario Amodei, CEO стартапа Anthropic, создателей LLM моделей Claude, написал в блоге [1] призыв к ужесточению экспортного контроля США за чипами для обучения ИИ. Дословно это звучит как Export controls serve a vital purpose: keeping democratic nations at the forefront of AI development. У него под постом в твиттере развернулась большая полемика с теми кто против ограничений на развитие ИИ [2]. Большая часть комментариев звучит как при всём уважении к Вашей команде, но DeepSeek молодцы и развивать ИИ модели с открытым кодом важно.
Разработка ИИ стремительно политизируется вместе с демократизацией ИИ инструментов.
Ссылки:
[1] https://darioamodei.com/on-deepseek-and-export-controls
[2] https://x.com/DarioAmodei/status/1884636410839535967
#ai #opensource #deepseek #llm
Darioamodei
Dario Amodei — On DeepSeek and Export Controls
Полезные ссылки про данные, технологии и не только:
- DocumentDB: Open-Source Announcement [1] похоже Microsoft выложили в открытый код [2] новый NoSQL продукт, прямой конкурент MongoDB. Внутри там FerretDB и PostgreSQL, бенчмарки пока не наблюдаются, что странно. Может быть в ClickBench/JSONBench они появятся через какое-то время. Пока главное достоинство лицензия MIT.
- ai_query function [3] в Databricks есть функция ai_query которую можно использовать прямо в SQL запросе и которая позволяет обрабатывать данные с помощью одной из LLM специальным запросом. Осталось подождать когда такая функция или аналог появятся во всех современных RDBMS
- Human-Computer Input via a Wrist-Based sEMG Wearable [4] исследование Metaпро уличную магию про использование жестов для управления устройствами. Помимо того что это может поменять многое в обыденной жизни тут ещё и много открытых наборов данных Я думал такие устройства будут делать в виде тонких перчаток, а оказывается что можно в виде браслета.
- pg_mooncake. Postgres extension for 1000x faster analytics [5] расширение для колоночных таблиц для PostgreSQL для ускорения аналитики. Внутри, ожидаемо, DuckDB
Ссылки:
[1] https://opensource.microsoft.com/blog/2025/01/23/documentdb-open-source-announcement/
[2] https://github.com/microsoft/documentdb
[3] https://docs.databricks.com/en/sql/language-manual/functions/ai_query.html#examples
[4] https://www.meta.com/blog/surface-emg-wrist-white-paper-reality-labs/
[5] https://github.com/Mooncake-Labs/pg_mooncake
#opensource #rdbms #postgresql #duckdb #datatools
- DocumentDB: Open-Source Announcement [1] похоже Microsoft выложили в открытый код [2] новый NoSQL продукт, прямой конкурент MongoDB. Внутри там FerretDB и PostgreSQL, бенчмарки пока не наблюдаются, что странно. Может быть в ClickBench/JSONBench они появятся через какое-то время. Пока главное достоинство лицензия MIT.
- ai_query function [3] в Databricks есть функция ai_query которую можно использовать прямо в SQL запросе и которая позволяет обрабатывать данные с помощью одной из LLM специальным запросом. Осталось подождать когда такая функция или аналог появятся во всех современных RDBMS
- Human-Computer Input via a Wrist-Based sEMG Wearable [4] исследование Meta
- pg_mooncake. Postgres extension for 1000x faster analytics [5] расширение для колоночных таблиц для PostgreSQL для ускорения аналитики. Внутри, ожидаемо, DuckDB
Ссылки:
[1] https://opensource.microsoft.com/blog/2025/01/23/documentdb-open-source-announcement/
[2] https://github.com/microsoft/documentdb
[3] https://docs.databricks.com/en/sql/language-manual/functions/ai_query.html#examples
[4] https://www.meta.com/blog/surface-emg-wrist-white-paper-reality-labs/
[5] https://github.com/Mooncake-Labs/pg_mooncake
#opensource #rdbms #postgresql #duckdb #datatools
Microsoft Open Source Blog
DocumentDB: Open-Source Announcement - Microsoft Open Source Blog
Learn more on how Microsoft Open Source can help with you with your data stores with the announcement of DocumentDB.
В рубрике интересных инструментов работы с данными Mathesar [1] ещё одна альтернатива Airtable, с открытым кодом под GPL-3.0 и похожий во многом на Teable о котором я ранее писал.
Если вкратце то это UI поверх таблиц в PostgreSQL. Выглядит как удобная штука в жанре онлайн MS Access.
Альтернативы Airtable - это хорошая новость, со многими данными надо работать руками и не всё доверишь облакам.
Ссылки:
[1] https://mathesar.org
#opensource #datatools
Если вкратце то это UI поверх таблиц в PostgreSQL. Выглядит как удобная штука в жанре онлайн MS Access.
Альтернативы Airtable - это хорошая новость, со многими данными надо работать руками и не всё доверишь облакам.
Ссылки:
[1] https://mathesar.org
#opensource #datatools
Вышла новая версия Duckdb 1.2.0 [1] что важно - это существенная оптимизация скорости чтения данных. Пишут что обновили парсер для CSV [2] ускорив его до 15% и общие ускорение на 13% по тестам TPC-H SF100.
Из другого важного - CSV парсер теперь поддерживает кодировки UTF-16 и Latin-1. Это хорошо, но пока недостаточно. Один из актуальных недостатков DuckDB в том что до сих пор он поддерживал только CSV файлы в кодировке UTF-8, а из всех остальных кодировок данные надо было преобразовывать. Почему так лично я до сих пор не знаю, подозреваю что дело в том что команда DuckDB фокусируется на повышении производительности.
Там есть и другие изменения, но, в целом, менее значимые. Основные сценарии использования DuckDB связаны с парсингом CSV и работой с другими дата-файлами и с общей производительностью.
Ссылки:
[1] https://duckdb.org/2025/02/05/announcing-duckdb-120
[2] https://github.com/duckdb/duckdb/pull/14260
#opensource #duckdb #datatools #rdbms
Из другого важного - CSV парсер теперь поддерживает кодировки UTF-16 и Latin-1. Это хорошо, но пока недостаточно. Один из актуальных недостатков DuckDB в том что до сих пор он поддерживал только CSV файлы в кодировке UTF-8, а из всех остальных кодировок данные надо было преобразовывать. Почему так лично я до сих пор не знаю, подозреваю что дело в том что команда DuckDB фокусируется на повышении производительности.
Там есть и другие изменения, но, в целом, менее значимые. Основные сценарии использования DuckDB связаны с парсингом CSV и работой с другими дата-файлами и с общей производительностью.
Ссылки:
[1] https://duckdb.org/2025/02/05/announcing-duckdb-120
[2] https://github.com/duckdb/duckdb/pull/14260
#opensource #duckdb #datatools #rdbms
DuckDB
Announcing DuckDB 1.2.0
The DuckDB team is happy to announce that today we're releasing DuckDB version 1.2.0, codenamed “Histrionicus”.
Возвращаю на голову шляпу дата инженера и продолжаю про разные инструменты.
Одна из рабочих идей у меня сейчас - это инструмент автоматического документирования датасетов/баз данных с приоритетом на "дикие данные" когда файл с данными есть, а документации на него нет. Очень частая ситуация с порталами открытых данных.
Причём потребность в таком инструменте уже очень давно есть, а вот наглядно я видел только облачный сервис CastorDoc который в этом продвинулся и только некоторые дата каталоги. А я сам экспериментировал и создал утилиту metacrafter для идентификации семантических типов данных. Но потребность в автодокументировании шире. Это, как минимум:
1. Автоматизация описания полей набора данных, желательно на нескольких языках: английский, испанский, русский, армянский и тд.
2. Написание описания набора данных так чтобы по датасету или его части можно было бы рассказать о чём он.
3. Описание структуры датасета не просто перечислением полей, а указание типа, описания полей, числа уникальных записей и тд.
4. Автоидентификация и документирование справочников. Почти всегда эти справочники есть и почти всегда их необходимо идентифицировать и описывать.
5. Автоматическая генерация типовых запросов к данным по аналогии с автогенерацией кода для доступа к API, нужны автосгенерированные запросы для доступа к данным.
Это всё самое очевидное, чуть более неочевидное это генерация документации по шаблонам, на разных языках и многое другое.
Самое простое и быстрое решение которое я вижу - это связка DuckDB + LLM модель, простые эксперименты подтверждают что это возможно и несложно. Но если Вы знаете хорошие/эффективные/удобные инструменты документирования датасетов - поделитесь, интересно их посмотреть в работе. Особенно те что с открытым кодом.
#opendata #datadocumentation #opensource #datatools #ideas
Одна из рабочих идей у меня сейчас - это инструмент автоматического документирования датасетов/баз данных с приоритетом на "дикие данные" когда файл с данными есть, а документации на него нет. Очень частая ситуация с порталами открытых данных.
Причём потребность в таком инструменте уже очень давно есть, а вот наглядно я видел только облачный сервис CastorDoc который в этом продвинулся и только некоторые дата каталоги. А я сам экспериментировал и создал утилиту metacrafter для идентификации семантических типов данных. Но потребность в автодокументировании шире. Это, как минимум:
1. Автоматизация описания полей набора данных, желательно на нескольких языках: английский, испанский, русский, армянский и тд.
2. Написание описания набора данных так чтобы по датасету или его части можно было бы рассказать о чём он.
3. Описание структуры датасета не просто перечислением полей, а указание типа, описания полей, числа уникальных записей и тд.
4. Автоидентификация и документирование справочников. Почти всегда эти справочники есть и почти всегда их необходимо идентифицировать и описывать.
5. Автоматическая генерация типовых запросов к данным по аналогии с автогенерацией кода для доступа к API, нужны автосгенерированные запросы для доступа к данным.
Это всё самое очевидное, чуть более неочевидное это генерация документации по шаблонам, на разных языках и многое другое.
Самое простое и быстрое решение которое я вижу - это связка DuckDB + LLM модель, простые эксперименты подтверждают что это возможно и несложно. Но если Вы знаете хорошие/эффективные/удобные инструменты документирования датасетов - поделитесь, интересно их посмотреть в работе. Особенно те что с открытым кодом.
#opendata #datadocumentation #opensource #datatools #ideas
В рубрике интересной визуализации данных DataRepublican [1] проект по визуализации доноров и получателей средств НКО в США и ряд других визуализаций. Можно сказать этакое пересечение Республиканской партии США и дата журналистики, редкое явление, но можно убедиться что реальное. На них ссылаются Wikileaks [2] подсвечивая расходы денег налогоплательщиков США на Internews [3], НКО получавшую существенную долю средств от USAID и поддерживавшее значительную часть СМИ по всему миру.
Что характерно в аккаунте Wikileaks большая волна идёт против USAID [4] с публикациями множества документов подтверждающих что мол они "лицемерные нехорошие ребята" и прямой инструмент мягкой силы США. В общем немного странно видеть такое единодушие WikiLeaks и республиканских блогеров, но допускаю что что-то пропустил.
А теперь про чисто техническое
Сама визуализация на DataRepublican интересная ещё и по тому как она сделана. Я вначале думал что там какая-то графовая база данных внутри, вроде Neo4J и сложные запросы через openCypher, но всё оказалось интереснее. В графах они подгружают на клиента ZIP файлы с CSV файлами внутри, около 7 мегабайт и распаковывают и отображают их через Javascript.
Очень оригинальное решение, я давно такого не видел. Вместо API грузить на клиента большие заархивированные батчи и обрабатывать их там после распаковки.
У них всё это, данные и код, есть в открытом репозитории, можно будет как-нибудь изучить [5]
Ссылки:
[1] https://datarepublican.com
[2] https://x.com/wikileaks/status/1888098131537183170
[3] https://datarepublican.com/expose/?eins=943027961
[4] https://x.com/wikileaks
[5] https://github.com/DataRepublican/datarepublican
#opendata #opensource #wikileaks #dataviz
Что характерно в аккаунте Wikileaks большая волна идёт против USAID [4] с публикациями множества документов подтверждающих что мол они "лицемерные нехорошие ребята" и прямой инструмент мягкой силы США. В общем немного странно видеть такое единодушие WikiLeaks и республиканских блогеров, но допускаю что что-то пропустил.
А теперь про чисто техническое
Сама визуализация на DataRepublican интересная ещё и по тому как она сделана. Я вначале думал что там какая-то графовая база данных внутри, вроде Neo4J и сложные запросы через openCypher, но всё оказалось интереснее. В графах они подгружают на клиента ZIP файлы с CSV файлами внутри, около 7 мегабайт и распаковывают и отображают их через Javascript.
Очень оригинальное решение, я давно такого не видел. Вместо API грузить на клиента большие заархивированные батчи и обрабатывать их там после распаковки.
У них всё это, данные и код, есть в открытом репозитории, можно будет как-нибудь изучить [5]
Ссылки:
[1] https://datarepublican.com
[2] https://x.com/wikileaks/status/1888098131537183170
[3] https://datarepublican.com/expose/?eins=943027961
[4] https://x.com/wikileaks
[5] https://github.com/DataRepublican/datarepublican
#opendata #opensource #wikileaks #dataviz
Полезные ссылки про данные, технологии и не только:
- Perforator [1] профайлер приложений от Яндекса и с использованием eBPF [2]. Полезно для отладки многих сложных и простых нативных приложений и отдельно расписано как профилировать и оптимизировать серверные приложения на Python. Выглядит как очень добротный open source продукт
- GPT Researcher [3] автономный инструмент для исследований с аккуратной простановкой цитат, использует внешние и локальные источники. Интегрирован с OpenAI
- The Illustrated DeepSeek-R1 [4] подробно о DeepSeek в картинках, позволяет легче ухватить суть продукта
- DataLumos [5] проект Университета Мичигана по архивации государственных и социальных данных, построен на базе OpenICPSR [6], данных не очень много, но они адаптированы под исследовательские задачи
- Data Formulator: Create Rich Visualizations with AI [7] полноценный движок для визуализации данных с помощью ИИ. Выпущен исследователями из Microsoft вместе с научной работой, под лицензией MIT. Выглядит как proof-of-concept, не факт что его можно применять в практических задачах сразу и из коробки, но для экспериментов самое оно. И для идей и вдохновения
- Chat2DB [8] открытый код (community edition) и сервис по управлению базами данных с помощью ИИ. Всё самое вкусное вынесли в коммерческие версии, но посмотреть стоит в любом случае.
Ссылки:
[1] https://perforator.tech
[2] https://ebpf.io
[3] https://github.com/assafelovic/gpt-researcher
[4] https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
[5] https://www.datalumos.org
[6] https://www.openicpsr.org/openicpsr/
[7] https://github.com/microsoft/data-formulator
[8] https://chat2db.ai
#opensource #datatools #opendata #ai
- Perforator [1] профайлер приложений от Яндекса и с использованием eBPF [2]. Полезно для отладки многих сложных и простых нативных приложений и отдельно расписано как профилировать и оптимизировать серверные приложения на Python. Выглядит как очень добротный open source продукт
- GPT Researcher [3] автономный инструмент для исследований с аккуратной простановкой цитат, использует внешние и локальные источники. Интегрирован с OpenAI
- The Illustrated DeepSeek-R1 [4] подробно о DeepSeek в картинках, позволяет легче ухватить суть продукта
- DataLumos [5] проект Университета Мичигана по архивации государственных и социальных данных, построен на базе OpenICPSR [6], данных не очень много, но они адаптированы под исследовательские задачи
- Data Formulator: Create Rich Visualizations with AI [7] полноценный движок для визуализации данных с помощью ИИ. Выпущен исследователями из Microsoft вместе с научной работой, под лицензией MIT. Выглядит как proof-of-concept, не факт что его можно применять в практических задачах сразу и из коробки, но для экспериментов самое оно. И для идей и вдохновения
- Chat2DB [8] открытый код (community edition) и сервис по управлению базами данных с помощью ИИ. Всё самое вкусное вынесли в коммерческие версии, но посмотреть стоит в любом случае.
Ссылки:
[1] https://perforator.tech
[2] https://ebpf.io
[3] https://github.com/assafelovic/gpt-researcher
[4] https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
[5] https://www.datalumos.org
[6] https://www.openicpsr.org/openicpsr/
[7] https://github.com/microsoft/data-formulator
[8] https://chat2db.ai
#opensource #datatools #opendata #ai
ebpf.io
eBPF - Introduction, Tutorials & Community Resources
eBPF is a revolutionary technology that can run sandboxed programs in the Linux kernel without changing kernel source code or loading a kernel module.
Ещё один проект по быстрому созданию приложений на основе датасетов Preswald [1]. С открытым кодом, под лицензией Apache 2.0, вместо low code/no-code пропагандируют принцип Code-First Simplicity (минимальный, но необходимый код), а также декларативное программирование через конфигурацию в toml файлах.
Когда и кому такой инструмент зайдёт? Тем кому нужно быстро визуализировать данные в наглядном виде и предоставлять их в таком виде пользователям. В этом смысле продукт похож чем-то на Observable или Datasette [2] .
На мой взгляд в части демонстрации возможностей инструмента команда как-то сильно недорабатывает, не видно интерактивных демо, а с другой стороны это же просто ещё один инструмент в копилку аналогичных. Возможно, полезный в будущем.
Ссылки:
[1] https://github.com/StructuredLabs/preswald
[2] https://datasette.io
#opensource #datatools
Когда и кому такой инструмент зайдёт? Тем кому нужно быстро визуализировать данные в наглядном виде и предоставлять их в таком виде пользователям. В этом смысле продукт похож чем-то на Observable или Datasette [2] .
На мой взгляд в части демонстрации возможностей инструмента команда как-то сильно недорабатывает, не видно интерактивных демо, а с другой стороны это же просто ещё один инструмент в копилку аналогичных. Возможно, полезный в будущем.
Ссылки:
[1] https://github.com/StructuredLabs/preswald
[2] https://datasette.io
#opensource #datatools
GitHub
GitHub - StructuredLabs/preswald: Preswald is a framework for building and deploying interactive data apps, internal tools, and…
Preswald is a framework for building and deploying interactive data apps, internal tools, and dashboards with Python. With one command, you can launch, share, and deploy locally or in the cloud, tu...
Полезные ссылки про данные, технологии и не только:
- Kreuzberg [1] библиотека для Python по извлечению текста из документов, поддерживает множество форматов, внутри использует Pandoc и Tesseract OCR. Создано как раз для использования в задачах RAG (Retrieval Augmented Generation) с прицелом на локальную обработку данных и минимумом зависимостей. Лицензия MIT
- Validoopsie [2] другая библиотека для Python для валидации данных. Использует библиотеку Narwhals благодаря которой подключается к почти любым видами дата-фреймов. Выглядит полезной альтернативой Great Expectations, лично для меня в валидации данных глобальный нерешённый вопрос в том что тут правильнее, код или декларативное программирования. Иначе говоря, правила проверки должны ли быть отчуждаемыми от языка разработки. Здесь валидация встроена в код, но поверх можно сделать и декларативный движок. Лицензия MIT
- Scripton [3] коммерческое IDE для Python с необычной фичей визуализации данных в реальном времени. Есть только скриншоты, записи экрана и коммерческая версия для macOS. Для тех кто занимается алгоритмической визуализацией может быть удобно, для остальных задач пока нет такой уверенности.
- New horizons for Julia [4] по сути статья о том что язык программирования Julia ещё жив и развивается. Правда медленно, на мой взгляд, но вроде как есть позитивное движение за пределами научных областей. Лично я почти не сталкивался с Julia кроме как на уровне примеров кода, но хорошо если он кому-то нравится и полезен.
- Data-Driven Scrollytelling with Quarto [5] визуализация дата-историй с помощью движка Quarto, итоги конкурса таких визуализаций с большим числом примеров и победителей. Примеры все от команды компании Posit которая этот open-source движок Quarto и разрабатывает. Скажу отдельно что это очень правильно. Если ты делаешь любой движок по визуализации, то просто обязательно надо проводить такие конкурсы.
- The Best Way to Use Text Embeddings Portably is With Parquet and Polars [6] ещё один обзор о том насколько эффективен Parquet в связке с Polars для работы с данными, в данном случае данными карт Magic of the Gathering. Автор тоже задаётся вопросом о том почему Parquet не поддерживается в MS Excel.
- How to Make Superbabies [7] особенно длинный лонгрид о том как генетическими изменениями можно улучшать человека, создавать супер детей или "оптимизированных детей", как ещё пишет автор. Читать и думать об этом надо потому что всё идёт к тому что скоро это станет ещё одной острой социальной и геополитической темой.
Ссылки:
[1] https://github.com/Goldziher/kreuzberg
[2] https://github.com/akmalsoliev/Validoopsie
[3] https://scripton.dev/
[4] https://lwn.net/Articles/1006117/
[5] https://posit.co/blog/closeread-prize-winners/
[6] https://minimaxir.com/2025/02/embeddings-parquet/
[7] https://www.lesswrong.com/posts/DfrSZaf3JC8vJdbZL/how-to-make-superbabies
#opensource #data #datatools #dataviz #genetics #python
- Kreuzberg [1] библиотека для Python по извлечению текста из документов, поддерживает множество форматов, внутри использует Pandoc и Tesseract OCR. Создано как раз для использования в задачах RAG (Retrieval Augmented Generation) с прицелом на локальную обработку данных и минимумом зависимостей. Лицензия MIT
- Validoopsie [2] другая библиотека для Python для валидации данных. Использует библиотеку Narwhals благодаря которой подключается к почти любым видами дата-фреймов. Выглядит полезной альтернативой Great Expectations, лично для меня в валидации данных глобальный нерешённый вопрос в том что тут правильнее, код или декларативное программирования. Иначе говоря, правила проверки должны ли быть отчуждаемыми от языка разработки. Здесь валидация встроена в код, но поверх можно сделать и декларативный движок. Лицензия MIT
- Scripton [3] коммерческое IDE для Python с необычной фичей визуализации данных в реальном времени. Есть только скриншоты, записи экрана и коммерческая версия для macOS. Для тех кто занимается алгоритмической визуализацией может быть удобно, для остальных задач пока нет такой уверенности.
- New horizons for Julia [4] по сути статья о том что язык программирования Julia ещё жив и развивается. Правда медленно, на мой взгляд, но вроде как есть позитивное движение за пределами научных областей. Лично я почти не сталкивался с Julia кроме как на уровне примеров кода, но хорошо если он кому-то нравится и полезен.
- Data-Driven Scrollytelling with Quarto [5] визуализация дата-историй с помощью движка Quarto, итоги конкурса таких визуализаций с большим числом примеров и победителей. Примеры все от команды компании Posit которая этот open-source движок Quarto и разрабатывает. Скажу отдельно что это очень правильно. Если ты делаешь любой движок по визуализации, то просто обязательно надо проводить такие конкурсы.
- The Best Way to Use Text Embeddings Portably is With Parquet and Polars [6] ещё один обзор о том насколько эффективен Parquet в связке с Polars для работы с данными, в данном случае данными карт Magic of the Gathering. Автор тоже задаётся вопросом о том почему Parquet не поддерживается в MS Excel.
- How to Make Superbabies [7] особенно длинный лонгрид о том как генетическими изменениями можно улучшать человека, создавать супер детей или "оптимизированных детей", как ещё пишет автор. Читать и думать об этом надо потому что всё идёт к тому что скоро это станет ещё одной острой социальной и геополитической темой.
Ссылки:
[1] https://github.com/Goldziher/kreuzberg
[2] https://github.com/akmalsoliev/Validoopsie
[3] https://scripton.dev/
[4] https://lwn.net/Articles/1006117/
[5] https://posit.co/blog/closeread-prize-winners/
[6] https://minimaxir.com/2025/02/embeddings-parquet/
[7] https://www.lesswrong.com/posts/DfrSZaf3JC8vJdbZL/how-to-make-superbabies
#opensource #data #datatools #dataviz #genetics #python