Я тут наблюдаю время от времени как публикуют открытые данные некоторые команды, в том числе с хорошей мировой репутацией, но с небольшими знаниями по современной дата инженерии и уже какое-то бесконечное время смотрю как многие открытые и не только открытые данные опубликованы. И прихожу к мысли о том что уже классическое определение открытых данных с точки зрения 5 звезд которое формулировал Тим-Бернерс Ли [1] [2] не то чтобы устарело, но требует актуализации.
Напомню как это было сформулировано:
- 1 звезда - данные доступны онлайн в любом формате ⭐️
- 2 звезды - данные доступны хотя бы в структурированном формате, например, Excel таблица ⭐️⭐️
- 3 звезды - данные доступны в структурированном непроприетарном формате, например, CSV, KML, JSON и др. ⭐️⭐️⭐️
- 4 звезды - данные доступны по прямой ссылке и в форматах а ля RDF (RDF, Turtle, JSON-LD и тд.). То есть их не надо получать динамически через какой-нибудь экспорт из графика или системы, а можно напрямую скачать.⭐️⭐️⭐️⭐️
- 5 звезд - данные доступны как Linked data, их можно связывать с другими датасетами. ⭐️⭐️⭐️⭐️⭐️
Концепция изначально хорошая и правильная, но она неизбежно столкнулась с тем что прижилась и, то частично, только в академической среде. В первую очередь потому что Linked Data плохо связывается с большими данными в общем случае, и с тем что работа над схематическим описанием в Linked Data - это серьёзный барьер с отсутствием прямой экономической выгоды. Это не значит что связанных данных нигде нет, это лишь значит что их мало и доля не растёт. Увы.
Если посмотреть по прошествии более 10 лет с момента формулировки и с точки зрения стремительного развитие работы с данными, я бы, навскидку, описал это так. Не по звёздам, а по уровням качества данных.
- 1 уровень - данные доступны в любом виде
- 2 уровень - данные доступны и к ним есть сопровождающие их базовые метаданные
- 3 уровень - данные доступны, к ним есть метаданные и они опубликованы в машиночитаемой форме
- 4 уровень - данные доступны, к ним есть метаданные, они машиночитаемы и к ним есть документация и/или схема
- 5 уровень - данные доступны, к ним есть метаданные, они машиночитаемы, к ним есть документация и они опубликованы в современных форматах для дата инженерии (parquet) или также доступны через API или как связанные данные Linked Data
- 6 уровень - данные оформлены как дата продукт, они доступны, к ним есть метаданные, они машиночитаемы, есть документация и несколько способов/форматов их получения: простые форматы CSV/JSON, современные вроде parquet, API и SDK. Пример: датасет с данными стран доступный как CSV, как JSON, как parquet, и в виде библиотеки на Python.
Это пока что мысли навскидку, если ещё чуть-чуть подумать то можно сформулировать точнее, но основное думаю очевидно. Linked Data - это хорошо, но воспринимать это как единственно эволюционную доступность данных нельзя. Точно так же с проприетарными форматами. Когда-то Microsoft был объектом публичной атаки буквально всех кто был за открытость. Сейчас проприетарность опубликованного формата, скажем так, вторична при практическом использовании. Проблема форматов XLS/XLSX и, кстати, ODS тоже не в проприетарности, а в чрезмерной гибкости приводящей к проблемам при конвертации.
В то же время про доступность данных для дата инженеров более 10 лет назад никто особо не думал, когда обсуждали вот эту концепцию 5 звезд. Сейчас всё иначе и качество данных определяется, в том числе, тем понимаем ли мы пользователей.
Чуть позже я ещё вернусь к этой теме.
Ссылки:
[1] https://5stardata.info/en/
[2] https://dvcs.w3.org/hg/gld/raw-file/default/glossary/index.html#linked-open-data
#opendata #thoughts #data
Напомню как это было сформулировано:
- 1 звезда - данные доступны онлайн в любом формате ⭐️
- 2 звезды - данные доступны хотя бы в структурированном формате, например, Excel таблица ⭐️⭐️
- 3 звезды - данные доступны в структурированном непроприетарном формате, например, CSV, KML, JSON и др. ⭐️⭐️⭐️
- 4 звезды - данные доступны по прямой ссылке и в форматах а ля RDF (RDF, Turtle, JSON-LD и тд.). То есть их не надо получать динамически через какой-нибудь экспорт из графика или системы, а можно напрямую скачать.⭐️⭐️⭐️⭐️
- 5 звезд - данные доступны как Linked data, их можно связывать с другими датасетами. ⭐️⭐️⭐️⭐️⭐️
Концепция изначально хорошая и правильная, но она неизбежно столкнулась с тем что прижилась и, то частично, только в академической среде. В первую очередь потому что Linked Data плохо связывается с большими данными в общем случае, и с тем что работа над схематическим описанием в Linked Data - это серьёзный барьер с отсутствием прямой экономической выгоды. Это не значит что связанных данных нигде нет, это лишь значит что их мало и доля не растёт. Увы.
Если посмотреть по прошествии более 10 лет с момента формулировки и с точки зрения стремительного развитие работы с данными, я бы, навскидку, описал это так. Не по звёздам, а по уровням качества данных.
- 1 уровень - данные доступны в любом виде
- 2 уровень - данные доступны и к ним есть сопровождающие их базовые метаданные
- 3 уровень - данные доступны, к ним есть метаданные и они опубликованы в машиночитаемой форме
- 4 уровень - данные доступны, к ним есть метаданные, они машиночитаемы и к ним есть документация и/или схема
- 5 уровень - данные доступны, к ним есть метаданные, они машиночитаемы, к ним есть документация и они опубликованы в современных форматах для дата инженерии (parquet) или также доступны через API или как связанные данные Linked Data
- 6 уровень - данные оформлены как дата продукт, они доступны, к ним есть метаданные, они машиночитаемы, есть документация и несколько способов/форматов их получения: простые форматы CSV/JSON, современные вроде parquet, API и SDK. Пример: датасет с данными стран доступный как CSV, как JSON, как parquet, и в виде библиотеки на Python.
Это пока что мысли навскидку, если ещё чуть-чуть подумать то можно сформулировать точнее, но основное думаю очевидно. Linked Data - это хорошо, но воспринимать это как единственно эволюционную доступность данных нельзя. Точно так же с проприетарными форматами. Когда-то Microsoft был объектом публичной атаки буквально всех кто был за открытость. Сейчас проприетарность опубликованного формата, скажем так, вторична при практическом использовании. Проблема форматов XLS/XLSX и, кстати, ODS тоже не в проприетарности, а в чрезмерной гибкости приводящей к проблемам при конвертации.
В то же время про доступность данных для дата инженеров более 10 лет назад никто особо не думал, когда обсуждали вот эту концепцию 5 звезд. Сейчас всё иначе и качество данных определяется, в том числе, тем понимаем ли мы пользователей.
Чуть позже я ещё вернусь к этой теме.
Ссылки:
[1] https://5stardata.info/en/
[2] https://dvcs.w3.org/hg/gld/raw-file/default/glossary/index.html#linked-open-data
#opendata #thoughts #data
Написал короткий лонгрид в продолжение размышлений о качестве открытых данных и дата продуктах
#opendata #thoughts #datasets
#opendata #thoughts #datasets
Ivan’s Begtin Newsletter on digital, open and preserved government
Открытые данные как дата продукт
Почему продвижение открытых данных не означает понимания их аудитории
Кстати, не могу не поделиться мыслью что в мире сейчас большой явный кризис в сообществе открытости данных и вызван он развитием ИИ. Я уже не в первый раз слышу разговоры в стиле зачем нам публиковать хорошие открытые данные и работать над их качеством если ИИ всё сожрёт. Это прям большое ментальное давление на очень многие проекты Wikipedia, OpenStreetMap, сообщество OKF и десятки других.
Если это не отменяет повестку открытости для гос-ва, то ограничивает и сильно повестку сообщества. Для многих это большое ограничение в том как готовить хорошие открытые данные и про усиление неравенства в мире.
Все кто создают что-либо общедоступное сталкиваются с тем что они создают лишь топливо для ИИ и что они работают не на преумножение знаний и блага людям, а на обогащение OpenAI.
#opendata #thoughts #community
Если это не отменяет повестку открытости для гос-ва, то ограничивает и сильно повестку сообщества. Для многих это большое ограничение в том как готовить хорошие открытые данные и про усиление неравенства в мире.
Все кто создают что-либо общедоступное сталкиваются с тем что они создают лишь топливо для ИИ и что они работают не на преумножение знаний и блага людям, а на обогащение OpenAI.
#opendata #thoughts #community
К вопросу о том что есть и чего нет в Dateno в контексте того доступно через наше API и того что исследователи уже искали по наукометрии. Есть специфика данных в Dateno в том что пока ещё исследовательских данных в нём маловато и по очень объективным причинам.
В реестре каталогов данных Dateno сейчас 874 репозитория научных данных из которых проиндексировано пока только 99 репозиториев, а это чуть более 11% источников метаданных такого типа. И даже эти 874 репозитория - это не все репозитории научных данных в мире, а наиболее очевидные. Точное число, скорее всего, никто не знает потому что реестры вроде Re3Data и Fairsharing более широко трактуют научные дата-ресурсы и включают туда не только каталоги данных, но и базы данных.
Возвращаясь к источникам, в чём с ними сложность:
1. Коммерческие каталоги научных данных вроде облачных продуктов Elsevier и Figshare значительно ограничивают возможности их индексирования. Проиндексировать их можно, но высока вероятность блокировок с их стороны. это примерно 34% каталогов научных данных в реестре Dateno.
2. Каталоги результатов научной деятельности на DSpace легко индексируются, но устроены так что невозможно отдельно индексировать только датасеты. Чтобы проиндексировать их надо скачать все метаданные всех объектов и далее уже фильтровать датасеты. Причем последних будет не более 5% от всего общего числа материалов
3. Некоторые каталоги научных данных вроде тех что основаны Thredds или Galaxy имеют очень скудный набор метаданных, по сути они выглядят как большие научные файлохранилища. Правда и области применения у них узкие: метеорология и биоинформатика, поэтому они пока отложены
4. Для научных репозиториев данных главное API до сих пор это OAI-PMH 2.0. Очень унаследованное, очень неудобное по многим критериям, очень стандартизированное и обладающее критическим недостатком: оно не отдаёт ссылки на файлы в метаданных. Иначе говоря карточку датасета получить можно с базовыми полями метаданных, но метаданных связанных с ним файлов нельзя. Это решается, но тем не менее.
5. Есть очень крупные источники научных наборов данных в OpenAIRE, ScienceDB, ScienceBase, DataCite, BASE и ещё ряде других. Проиндексировав даже парочку из них можно добавить сразу +10-20 миллионов записей, но..., качество датасетов будет посредственное. Честно говоря я тяну с их подключением так долго как могу не потому что это сложно, а потому что качество содержания поискового индекса снизится, у этих источников нет ссылок на ресурсы. Потому что все они агрегируют через OAI-PMH 2.0 Если бы единственным критерием качества в Dateno было бы только число записей, то вопросов бы не было.
Итого это развёрнутый ответ на невысказанный вопрос "Почему в Dateno так мало научных данных, всего 488 тысяч датасетов?" Краткий ответ: из-за качества данных, а более полный ответ выше.
В любом случае крайне важно что ключевой продукт Dateno, резко отличающий его от Google Dataset Search, - это открытый индекс. Помимо открытого API к поиску это ещё и открытый реестр каталогов данных и открытая статистика.
При этом открытый индекс - это большая ответственность потому что все косяки вылезают наружу достаточно быстро, ошибки находятся, также очень быстро.
Открытый индекс - это, также, дата-продукт и у него куча метрик качества о которых я когда-нибудь расскажу в подробностях, но скорее это будет в форме выступления на конференции чем короткая заметка.
А пока покажу некоторые существенные отличия и сравнение GDS (Google Dataset Search) и Dateno.
#opendata #dateno #thoughts #datacatalogs #datasets
В реестре каталогов данных Dateno сейчас 874 репозитория научных данных из которых проиндексировано пока только 99 репозиториев, а это чуть более 11% источников метаданных такого типа. И даже эти 874 репозитория - это не все репозитории научных данных в мире, а наиболее очевидные. Точное число, скорее всего, никто не знает потому что реестры вроде Re3Data и Fairsharing более широко трактуют научные дата-ресурсы и включают туда не только каталоги данных, но и базы данных.
Возвращаясь к источникам, в чём с ними сложность:
1. Коммерческие каталоги научных данных вроде облачных продуктов Elsevier и Figshare значительно ограничивают возможности их индексирования. Проиндексировать их можно, но высока вероятность блокировок с их стороны. это примерно 34% каталогов научных данных в реестре Dateno.
2. Каталоги результатов научной деятельности на DSpace легко индексируются, но устроены так что невозможно отдельно индексировать только датасеты. Чтобы проиндексировать их надо скачать все метаданные всех объектов и далее уже фильтровать датасеты. Причем последних будет не более 5% от всего общего числа материалов
3. Некоторые каталоги научных данных вроде тех что основаны Thredds или Galaxy имеют очень скудный набор метаданных, по сути они выглядят как большие научные файлохранилища. Правда и области применения у них узкие: метеорология и биоинформатика, поэтому они пока отложены
4. Для научных репозиториев данных главное API до сих пор это OAI-PMH 2.0. Очень унаследованное, очень неудобное по многим критериям, очень стандартизированное и обладающее критическим недостатком: оно не отдаёт ссылки на файлы в метаданных. Иначе говоря карточку датасета получить можно с базовыми полями метаданных, но метаданных связанных с ним файлов нельзя. Это решается, но тем не менее.
5. Есть очень крупные источники научных наборов данных в OpenAIRE, ScienceDB, ScienceBase, DataCite, BASE и ещё ряде других. Проиндексировав даже парочку из них можно добавить сразу +10-20 миллионов записей, но..., качество датасетов будет посредственное. Честно говоря я тяну с их подключением так долго как могу не потому что это сложно, а потому что качество содержания поискового индекса снизится, у этих источников нет ссылок на ресурсы. Потому что все они агрегируют через OAI-PMH 2.0 Если бы единственным критерием качества в Dateno было бы только число записей, то вопросов бы не было.
Итого это развёрнутый ответ на невысказанный вопрос "Почему в Dateno так мало научных данных, всего 488 тысяч датасетов?" Краткий ответ: из-за качества данных, а более полный ответ выше.
В любом случае крайне важно что ключевой продукт Dateno, резко отличающий его от Google Dataset Search, - это открытый индекс. Помимо открытого API к поиску это ещё и открытый реестр каталогов данных и открытая статистика.
При этом открытый индекс - это большая ответственность потому что все косяки вылезают наружу достаточно быстро, ошибки находятся, также очень быстро.
Открытый индекс - это, также, дата-продукт и у него куча метрик качества о которых я когда-нибудь расскажу в подробностях, но скорее это будет в форме выступления на конференции чем короткая заметка.
А пока покажу некоторые существенные отличия и сравнение GDS (Google Dataset Search) и Dateno.
#opendata #dateno #thoughts #datacatalogs #datasets
Telegram
Ivan Begtin
Dateno: первые опыты
Современная наука во многом построена на больших массивах данных, доступ к которым можно получить через репозитории, однако инструментов, позволяющих осуществлять поиск сразу по нескольким из них не так много. Так, Google Dataset Search…
Современная наука во многом построена на больших массивах данных, доступ к которым можно получить через репозитории, однако инструментов, позволяющих осуществлять поиск сразу по нескольким из них не так много. Так, Google Dataset Search…
К вопросу, во многом философскому, но с практическим умыслом, о том что считать данными, а что нет приведу пример в временными рядами. Не для всех, но для многих пользователей данные имеют географическую привязку и работая даже с большой данных стат наблюдений интересуют конкретные страны/страна и временной ряд получаемый из этой большой базы также имеет привязку к одной или двум странам. Но есть и задачи когда надо работать с базой целиком.
На некоторых порталах открытых данных, таких как портал данных ЕЦБ или Банка международных расчётов есть понятие набора данных, их мало и они велики, и есть понятие как раз временного ряда у каждого из которых есть пермалинк. Потребители есть у обоих типов данных. В Dateno эти данные уже частично агрегируются, около 30% карточек в Dateno - это агрегированные временные ряды и это оправдано поскольку пользователи, напомню, ищут чаще в привязке к территории. Но это выходит что отдельный тип данных, который может быть, а может не быть отдельным датасетом. Потому что ещё бывает так что временные ряды публикуют как-то ещё, а не в базе статистики. Что с этим делать для большей понятности? По хорошему разделять наборы данных и временные ряды, дать возможность фильтровать в поиске только их.
Аналогичным образом с геоданными/слоями карт. Слои карт - это чаще всего не файлы, а ссылки на точки подключения к API - ArcGIS или OGC. Их можно рассматривать как наборы данных, и иногда и часто так рассматривают, но, по хорошему, это некоторое отдельное явление, которое так и надо называть "Map layer".
Таких видов данных есть ещё некоторое количество, я же добавлю ещё что кроме них есть и более сложные случаи. Например, фиды новостей RSS и ATOM. Они данные или нет? ATOM фидов довольно много, только на европейском портале данных их более 141 тысячи, поскольку они являются одним из способов экспорта и доступа к геоданным на платформах на базе Geonetwork и ряда других.
ATOM Feed'ы также используются в каталогах данных на базе Thredds для доступа к метеорологическим данным.
Но, также их условно бесконечное число разбросано по интернету, как для доступа к новостям на сайтах, так и ко многим другим типам контента.
Можно ли выделять ATOM/RSS как отдельную категорию API и рассматривать их как данные и индексировать, например, нам в Dateno?
Ответ на этот вопрос содержится в контрвопросах - А зачем? А кому это нужно?
Один из важнейших критериев отнесения цифровых объектов/артефактов в к данным - это их востребованность целевой аудиторией тех кто с данными работает: дата инженеров, дата сайентистов, дата аналитиков, геоаналитиков, статистиков, экономистов, бизнес аналитиков и так далее.
И таких примеров очень много и всё больше возникает в процесс обнаружения новых, потенциально интересных источников данных.
P.S. Мне давно уже пора завести рубрику #whatisdata, пожалуй, буду помечать будущие размышления на эту тему именно ей
#whatisdata #thoughts #dateno #data
На некоторых порталах открытых данных, таких как портал данных ЕЦБ или Банка международных расчётов есть понятие набора данных, их мало и они велики, и есть понятие как раз временного ряда у каждого из которых есть пермалинк. Потребители есть у обоих типов данных. В Dateno эти данные уже частично агрегируются, около 30% карточек в Dateno - это агрегированные временные ряды и это оправдано поскольку пользователи, напомню, ищут чаще в привязке к территории. Но это выходит что отдельный тип данных, который может быть, а может не быть отдельным датасетом. Потому что ещё бывает так что временные ряды публикуют как-то ещё, а не в базе статистики. Что с этим делать для большей понятности? По хорошему разделять наборы данных и временные ряды, дать возможность фильтровать в поиске только их.
Аналогичным образом с геоданными/слоями карт. Слои карт - это чаще всего не файлы, а ссылки на точки подключения к API - ArcGIS или OGC. Их можно рассматривать как наборы данных, и иногда и часто так рассматривают, но, по хорошему, это некоторое отдельное явление, которое так и надо называть "Map layer".
Таких видов данных есть ещё некоторое количество, я же добавлю ещё что кроме них есть и более сложные случаи. Например, фиды новостей RSS и ATOM. Они данные или нет? ATOM фидов довольно много, только на европейском портале данных их более 141 тысячи, поскольку они являются одним из способов экспорта и доступа к геоданным на платформах на базе Geonetwork и ряда других.
ATOM Feed'ы также используются в каталогах данных на базе Thredds для доступа к метеорологическим данным.
Но, также их условно бесконечное число разбросано по интернету, как для доступа к новостям на сайтах, так и ко многим другим типам контента.
Можно ли выделять ATOM/RSS как отдельную категорию API и рассматривать их как данные и индексировать, например, нам в Dateno?
Ответ на этот вопрос содержится в контрвопросах - А зачем? А кому это нужно?
Один из важнейших критериев отнесения цифровых объектов/артефактов в к данным - это их востребованность целевой аудиторией тех кто с данными работает: дата инженеров, дата сайентистов, дата аналитиков, геоаналитиков, статистиков, экономистов, бизнес аналитиков и так далее.
И таких примеров очень много и всё больше возникает в процесс обнаружения новых, потенциально интересных источников данных.
P.S. Мне давно уже пора завести рубрику #whatisdata, пожалуй, буду помечать будущие размышления на эту тему именно ей
#whatisdata #thoughts #dateno #data
И, вдогонку, признаки хорошо организованной статистической системы:
1. Данные на первом месте (data-first). Это основной тип продуктов, вся остальная деятельность статслужбы должна быть вторичны.
2. Данные доступны в современных статистических (JSON-Stat, SDMX) или аналитических (Parquet) форматах. Или, как минимум, в CSV, JSON, XML с документацией схемы данных.
3. Все метаданных используемые в статбазах и публикациях систематизированы и ведутся в системе управления метаданными, с регулярными обновлениями.
4. Данные доступны с максимально возможной глубиной, с момента ведения переписей, сбора официальной статистики.
5. Доступ ко всем статданным и базам данных возможен через API
6. Все данные доступны для массовой выгрузки, без необходимости запрашивать по API тысячи индикаторов, но с возможностью скачать их целиком.
7. Исторические статистические сборники оцифрованы, доступны
8. Абсолютно все статистические сборники вначале публикуются онлайн и печатаются только в режиме печати по требованию
9. Статистические сборники для публикации в вебе создаются как интерактивные истории в модели data storytelling
10. Статистические отчеты, если они создаются как PDF файлы, являются книгами и публикуются только в случае значимых смысловых документов, но не для печати таблиц имеющихся в статистических базах данных
11. Статистику имеющую геопространственную привязку должна быть возможность увидеть на интерактивной карте.
12. Вся геопространственная статистика должна быть доступна как открытые данные и открытые OGC совместимые точки подключения к API WFS, WMS
13. Доступ к статистике осуществляется через каталог или поисковую систему по данным, включая таблицы, визуализацию, методологию и публикации.
14. Должна быть информационная политика дефрагментации данных. В рамках конкретной темы или отрасли должна быть возможность посмотреть или найти данные за любой период времени в любой форме, без необходимости искать в десятках статистических и ведомственных информационных системах.
#statistics #thoughts
1. Данные на первом месте (data-first). Это основной тип продуктов, вся остальная деятельность статслужбы должна быть вторичны.
2. Данные доступны в современных статистических (JSON-Stat, SDMX) или аналитических (Parquet) форматах. Или, как минимум, в CSV, JSON, XML с документацией схемы данных.
3. Все метаданных используемые в статбазах и публикациях систематизированы и ведутся в системе управления метаданными, с регулярными обновлениями.
4. Данные доступны с максимально возможной глубиной, с момента ведения переписей, сбора официальной статистики.
5. Доступ ко всем статданным и базам данных возможен через API
6. Все данные доступны для массовой выгрузки, без необходимости запрашивать по API тысячи индикаторов, но с возможностью скачать их целиком.
7. Исторические статистические сборники оцифрованы, доступны
8. Абсолютно все статистические сборники вначале публикуются онлайн и печатаются только в режиме печати по требованию
9. Статистические сборники для публикации в вебе создаются как интерактивные истории в модели data storytelling
10. Статистические отчеты, если они создаются как PDF файлы, являются книгами и публикуются только в случае значимых смысловых документов, но не для печати таблиц имеющихся в статистических базах данных
11. Статистику имеющую геопространственную привязку должна быть возможность увидеть на интерактивной карте.
12. Вся геопространственная статистика должна быть доступна как открытые данные и открытые OGC совместимые точки подключения к API WFS, WMS
13. Доступ к статистике осуществляется через каталог или поисковую систему по данным, включая таблицы, визуализацию, методологию и публикации.
14. Должна быть информационная политика дефрагментации данных. В рамках конкретной темы или отрасли должна быть возможность посмотреть или найти данные за любой период времени в любой форме, без необходимости искать в десятках статистических и ведомственных информационных системах.
#statistics #thoughts
Я тут задумался над тем какие практические инструменты с LLM внутри я использую в работе и для чего хотелось бы использовать ещё. Хотелось бы, для многого конечно, но не всё ещё существует
Самое очевидное это переписывание текстов с помощью DeepL Write. Очень удобно для переписке и публикаций не на родном языке, поскольку сильно выправляет текст. Похоже на Grammarly, но ощущение что итоговый текст гораздо лучше и поддерживается не только английский язык. Главный минус пока только в том что поддерживаются только 8 языков. В любом случае очень удобно для публикации в англоязычных и других соцсетях
Совсем не такое очевидное, но важное для меня это сбор информации о дата каталогах. Это довольно специфическая лично моя задача по обновлению реестра каталогов данных в Dateno. Этот процесс на текущей стадии ручной, поскольку автоматизированный ранее собранных каталогов уже выполнен и оставшаяся часть работы - это ручная разметка. В частности вручную проставляется инфа по каталогу данных:
- название
- описание
- название владельца
- тип владельца (гос-во, муниципалитет, ученые и тд.)
- тематики
- теги
А также простановка геопривязки для тех ресурсов у которых её нет или если выясняется что они уровня регионов.
Это много ручной работы напрямую влияющей на качество данных в Dateno, поскольку тип владельца, геопривязки и тематики идут в фасеты поиска, а остальные поля отображаются в карточках датасетов.
Оказалось что Perplexity отлично выдаёт ответы на такие вопросы как:
- Who owns <> website ?
- About what this website is <> ?
А также, что очень практически удобно, Perplexity умеет точно отвечать на такие вопросы как "What is ISO3166-2 code of the Magallanes and Chilean Antarctica ?" и выдавать точный код.
Скорее всего Perplexity можно заменить на другую модель, но и текущие результаты вполне полезны.
Сейчас в Dateno около 18% (3.4 миллиона) наборов данных не имеют пометки типа владельца данных, а 2.4 миллиона не имеют привязки к стране/территории.
Это, в любом случае лучше чем у Google Dataset Search, но всё ещё недостаточно хорошо.
Применение LLM в повышении качества метаданных кажется очень реалистичной задачей.
#ai #thoughts #dateno #datasets #data
Самое очевидное это переписывание текстов с помощью DeepL Write. Очень удобно для переписке и публикаций не на родном языке, поскольку сильно выправляет текст. Похоже на Grammarly, но ощущение что итоговый текст гораздо лучше и поддерживается не только английский язык. Главный минус пока только в том что поддерживаются только 8 языков. В любом случае очень удобно для публикации в англоязычных и других соцсетях
Совсем не такое очевидное, но важное для меня это сбор информации о дата каталогах. Это довольно специфическая лично моя задача по обновлению реестра каталогов данных в Dateno. Этот процесс на текущей стадии ручной, поскольку автоматизированный ранее собранных каталогов уже выполнен и оставшаяся часть работы - это ручная разметка. В частности вручную проставляется инфа по каталогу данных:
- название
- описание
- название владельца
- тип владельца (гос-во, муниципалитет, ученые и тд.)
- тематики
- теги
А также простановка геопривязки для тех ресурсов у которых её нет или если выясняется что они уровня регионов.
Это много ручной работы напрямую влияющей на качество данных в Dateno, поскольку тип владельца, геопривязки и тематики идут в фасеты поиска, а остальные поля отображаются в карточках датасетов.
Оказалось что Perplexity отлично выдаёт ответы на такие вопросы как:
- Who owns <> website ?
- About what this website is <> ?
А также, что очень практически удобно, Perplexity умеет точно отвечать на такие вопросы как "What is ISO3166-2 code of the Magallanes and Chilean Antarctica ?" и выдавать точный код.
Скорее всего Perplexity можно заменить на другую модель, но и текущие результаты вполне полезны.
Сейчас в Dateno около 18% (3.4 миллиона) наборов данных не имеют пометки типа владельца данных, а 2.4 миллиона не имеют привязки к стране/территории.
Это, в любом случае лучше чем у Google Dataset Search, но всё ещё недостаточно хорошо.
Применение LLM в повышении качества метаданных кажется очень реалистичной задачей.
#ai #thoughts #dateno #datasets #data
Какой хороший инструмент, но без открытого кода.
Я эту фразу в последние годы повторяю чаще чем хотелось бы. Применительно почти ко всем инструментам, кроме тех где отсутствие кода оправдано. Например, выбираю инструмент для создания резервных копий и это сводится в итоге к Borg или Restic, хотя есть коммерческие альтернативы и неплохие. Но зачем они нужны если есть не хуже, а иногда и лучше с открытым кодом?
Или инструменты обработки и очистки данных. Да, их много, но чаще всего достаточно OpenRefine, или инструментов вроде pandas, polars, duckdb и др. для работы с датафреймами.
Или для ведения заметок, зачем нужны другие если есть Obsidian ? Конечно много хороших инструментов, но реально Obsidian закрывает большую часть задач.
Я не единственный кто так рассуждает. Достаточно подсчитать ежемесячные/ежегодные расходы на ПО и сервисы по подписке чтобы понимать реальную нагрузку на свой кошелёк или кошелёк компании.
Всё это про ниши продуктов и про то какие их свойства и характеристики подталкивают к тому чтобы их купить и какие приводят к поиску бесплатных альтернатив. Главный критерий - это то сколько усилий нужно приложить и насколько продуктовые характеристики реально создают качество жизни, удобство работы и тд.
Я бы распределил эти фичи следующим образом:
1. AI powered. Там где это уместно, там где это логично, там где это необходимо, там где есть для этого потребность - это реально повышает качество продукта. У нас в Dateno такое давно назрело и мы всё ещё планируем и ищем человека под fulltime работу на эти задачи с учётом и оговоркой что у нас международный проект и у него есть своя специфика. Но AI powered для данных я вижу много где, в первую очередь в многочисленных аналитических сервисах которые на основе пользовательских данных генерируют разного рода дашборды. То на что аналитик может потратить несколько недель делается за несколько часов.
2. Интеграция с облаками. То что является маст-хэв фичами для почти всех инструментов для работы с данными. Так чтобы напрямую подключаться к S3 совместимому хранилищу, но с оговоркой что такие возможности стали уже по умолчанию у много каких открытых инструментов и зачем платить за коммерческую фичу.
3. Множество устройств. Особенно в части перехода с небольшого числа личных устройств на устройства для небольшой команды. У меня перед глазами есть как минимум такой инструмент и сервис как Tailscale, но это распространяется и на другие подобного рода zero-config сервисы.
Список не исчерпывающий, но важный в том что наиболее востребована комбинация стоимости воспроизведения сервиса или продукта и пользы которую он приносит.
А вот, к примеру, сейчас сложно сделать сервис ETL/ELT которому нет замены с открытым кодом
Поэтому работая над текущими продуктами всегда нужен ответ как минимум на 2 вопроса:
1) Есть ли у продукта открытая альтернатива?
2) Можно ли то же самое сделать с помощью ChatGPT ?
#thoughts #products
Я эту фразу в последние годы повторяю чаще чем хотелось бы. Применительно почти ко всем инструментам, кроме тех где отсутствие кода оправдано. Например, выбираю инструмент для создания резервных копий и это сводится в итоге к Borg или Restic, хотя есть коммерческие альтернативы и неплохие. Но зачем они нужны если есть не хуже, а иногда и лучше с открытым кодом?
Или инструменты обработки и очистки данных. Да, их много, но чаще всего достаточно OpenRefine, или инструментов вроде pandas, polars, duckdb и др. для работы с датафреймами.
Или для ведения заметок, зачем нужны другие если есть Obsidian ? Конечно много хороших инструментов, но реально Obsidian закрывает большую часть задач.
Я не единственный кто так рассуждает. Достаточно подсчитать ежемесячные/ежегодные расходы на ПО и сервисы по подписке чтобы понимать реальную нагрузку на свой кошелёк или кошелёк компании.
Всё это про ниши продуктов и про то какие их свойства и характеристики подталкивают к тому чтобы их купить и какие приводят к поиску бесплатных альтернатив. Главный критерий - это то сколько усилий нужно приложить и насколько продуктовые характеристики реально создают качество жизни, удобство работы и тд.
Я бы распределил эти фичи следующим образом:
1. AI powered. Там где это уместно, там где это логично, там где это необходимо, там где есть для этого потребность - это реально повышает качество продукта. У нас в Dateno такое давно назрело и мы всё ещё планируем и ищем человека под fulltime работу на эти задачи с учётом и оговоркой что у нас международный проект и у него есть своя специфика. Но AI powered для данных я вижу много где, в первую очередь в многочисленных аналитических сервисах которые на основе пользовательских данных генерируют разного рода дашборды. То на что аналитик может потратить несколько недель делается за несколько часов.
2. Интеграция с облаками. То что является маст-хэв фичами для почти всех инструментов для работы с данными. Так чтобы напрямую подключаться к S3 совместимому хранилищу, но с оговоркой что такие возможности стали уже по умолчанию у много каких открытых инструментов и зачем платить за коммерческую фичу.
3. Множество устройств. Особенно в части перехода с небольшого числа личных устройств на устройства для небольшой команды. У меня перед глазами есть как минимум такой инструмент и сервис как Tailscale, но это распространяется и на другие подобного рода zero-config сервисы.
Список не исчерпывающий, но важный в том что наиболее востребована комбинация стоимости воспроизведения сервиса или продукта и пользы которую он приносит.
А вот, к примеру, сейчас сложно сделать сервис ETL/ELT которому нет замены с открытым кодом
Поэтому работая над текущими продуктами всегда нужен ответ как минимум на 2 вопроса:
1) Есть ли у продукта открытая альтернатива?
2) Можно ли то же самое сделать с помощью ChatGPT ?
#thoughts #products
А что есть наборы данных?
Мысли к которым я регулярно возвращаюсь - это размышления о том что есть данные, чем они не являются и то по каким критериям считать что цифровой объект это дата файл или датасет.
Вот несколько примеров для размышления. Репозитории данных TextGRID [1], Virtual Language Observatory [2] и ряда других репозиториев связанных с компьютерной лингвистикой содержат множество цифровых объектов которые, в целом, можно относить к данным, но одновременно с этим там огромное число мультимедиа объектов: аудио, изображений и видео, а также множество текстов.
С точки зрения компьютерных лингвистов это, наверняка, данные, но для всех остальных они немашиночитаемы. Можно ли считать их датасетами? Когда эти же цифровые объекты представлены как наборы данных для машинного обучения, то это точно датасеты, без сомнений. Почему? Потому что у них потребители дата сайентисты. А чем хуже компьютерные лингвисты тогда? Вот, в том то и вопрос.
Другой пример, обязательные к раскрытию документы публичных компаний. В США публикуют файлы через систему SEC, в других странах есть аналогичное, а также сайты бирж. Среди их документов много Excel файлов и табличек внутри файлов PDF и MS Word. Можно ли рассматривать их как датасеты? С точки зрения финансовых аналитиков это, как минимум, файлы с данными. А финансовые аналитики это тоже пользователи данных, и одни из самых активных. Так как, можно ли трактовать их как датасеты?
Или, к примеру, документы прайс листов которые компании публикуют у себя на сайтах и некоторых площадках. Это ни в какой форме не public domain, тут вероятно и авторское право присутствует. С другой стороны, никто же на него не покушается, если индексировать их поисковиком, то просто в условиях использования устанавливать что права защищены. Но можно ли такие файлы считать наборами данных? По моему скорее нет, чем да, но есть сомнения.
Главные отличия датасета от любого просто лежащего в интернете файла с данными - это наличие карточки метаданных, контент машиночитаем и наличествует квалифицированный потребитель. Но очень и очень много случаев когда потребитель не так квалифицирован, данные не совсем машиночитаемы, а карточка с метаданными минимальна.
Ссылки:
[1] https://textgridrep.org
[2] https://vlo.clarin.eu
#opendata #datasets #thoughts
Мысли к которым я регулярно возвращаюсь - это размышления о том что есть данные, чем они не являются и то по каким критериям считать что цифровой объект это дата файл или датасет.
Вот несколько примеров для размышления. Репозитории данных TextGRID [1], Virtual Language Observatory [2] и ряда других репозиториев связанных с компьютерной лингвистикой содержат множество цифровых объектов которые, в целом, можно относить к данным, но одновременно с этим там огромное число мультимедиа объектов: аудио, изображений и видео, а также множество текстов.
С точки зрения компьютерных лингвистов это, наверняка, данные, но для всех остальных они немашиночитаемы. Можно ли считать их датасетами? Когда эти же цифровые объекты представлены как наборы данных для машинного обучения, то это точно датасеты, без сомнений. Почему? Потому что у них потребители дата сайентисты. А чем хуже компьютерные лингвисты тогда? Вот, в том то и вопрос.
Другой пример, обязательные к раскрытию документы публичных компаний. В США публикуют файлы через систему SEC, в других странах есть аналогичное, а также сайты бирж. Среди их документов много Excel файлов и табличек внутри файлов PDF и MS Word. Можно ли рассматривать их как датасеты? С точки зрения финансовых аналитиков это, как минимум, файлы с данными. А финансовые аналитики это тоже пользователи данных, и одни из самых активных. Так как, можно ли трактовать их как датасеты?
Или, к примеру, документы прайс листов которые компании публикуют у себя на сайтах и некоторых площадках. Это ни в какой форме не public domain, тут вероятно и авторское право присутствует. С другой стороны, никто же на него не покушается, если индексировать их поисковиком, то просто в условиях использования устанавливать что права защищены. Но можно ли такие файлы считать наборами данных? По моему скорее нет, чем да, но есть сомнения.
Главные отличия датасета от любого просто лежащего в интернете файла с данными - это наличие карточки метаданных, контент машиночитаем и наличествует квалифицированный потребитель. Но очень и очень много случаев когда потребитель не так квалифицирован, данные не совсем машиночитаемы, а карточка с метаданными минимальна.
Ссылки:
[1] https://textgridrep.org
[2] https://vlo.clarin.eu
#opendata #datasets #thoughts
Скоро надо будет подводить итоги этого года. Личные, профессиональные и всякие. У меня не получится изложить их в один текст/пост, начну с того что пришлось отложить и что пока не сделано. Всё это, идёт не первым приоритетом потому что first things first.
Вот наиболее технические отложенные задачи:
- Новый интерфейс для Ruarxive. Уже давно откладываемая задача на которую нет ресурсов это перезагрузка Национального цифрового архива ruarxive.org так чтобы сделать нормальный поиск по архивам, индексирование WARC файлов и удобный поиск по ним. Это оказалось не то чтобы сложной задачей, но требующей времени и концентрации хотя бы по написанию ТЗ чтобы к ней кого-то привлечь.
- Архивация госсайтов в РФ. Надо провести повторную архивацию всех ключевых российских госресурсов, в особенности всех цифровых ресурсов Росстата, сохранность их вызывает большие опасения. Но это стало сильно сложнее, многие российские госсайты теперь активно блокируют внешние краулеры, особенно из других стран
- Автоматизация документирования датасетов и баз данных. Нарастающая по важности задача поскольку данных всё больше, документировать их вручную всё более болезненно. Есть наработки в виде инструмента metacrafter'а и рассеяного кода, но надо всё свести конкретную модель и архитектуру. Скорее всего это постепенно сдвигается в сторону повышения качества Dateno и нового качества поиска.
- Много неопубликованных датасетов. По многим странам, не только по РФ. Например, база всего законодательства Казахстана в структурированном виде. Данные готовы, но не оформлены, не описаны, недостаточно ещё задокументированы.
- Библиотека универсального доступа к каталогам данных. Очень давно об этом думаю о том как сделать универсальный инструмент для поиска и доступа к данным в типовых каталогах, CKAN, DKAN, DataVerse, GeoNode и десятку других. Потому что в этом есть необходимость и довольно актуальная. Возможно наиболее логично перенести это в Dateno и сдвинуть в сторону сбора метаданных.
- Перезапустить оценку понятности языка PlainRussian. Возможно отложенное надолго поскольку LLM'ки типа GPT умеют это лучше. Конкурировать с ними сложно и непонятно зачем. Туда же относится создание оценки понятности языка для других языков, таких как армянский язык. Ничего сложного в этом нет, но опять же LLM дают лучший результат.
- Незавершённые проекты в Open Data Armenia. Многое всё ещё существует в полусобранных проектах, надо собраться с мыслями и силами довести их до продуктового состояния и продолжать развивать сообщество не только конкурсами, но и общей инфраструктурой данных.
- Неопубликованные курсы. По веб архивации, по digital humanities, по data discovery и по автоматизации каталогизации данных и их извлечению. И про обработку данных новыми инструментами.
- Недописанные книги/тексты/мануалы. Их как-то очень много, про личные тексты написать отдельно надо, а про рабочие - это тексты/книга про то как устроены данные и, что даже важнее, метаданные.
Про более приоритетное, особенно про Dateno, я ещё напишу позже.
Передаю эстафету всем тем кто думает о несделанном и думает о грузе несделанного о за прошлый год и как это сделать в следующем году.
#endofyear #thoughts #thinking #plans
Вот наиболее технические отложенные задачи:
- Новый интерфейс для Ruarxive. Уже давно откладываемая задача на которую нет ресурсов это перезагрузка Национального цифрового архива ruarxive.org так чтобы сделать нормальный поиск по архивам, индексирование WARC файлов и удобный поиск по ним. Это оказалось не то чтобы сложной задачей, но требующей времени и концентрации хотя бы по написанию ТЗ чтобы к ней кого-то привлечь.
- Архивация госсайтов в РФ. Надо провести повторную архивацию всех ключевых российских госресурсов, в особенности всех цифровых ресурсов Росстата, сохранность их вызывает большие опасения. Но это стало сильно сложнее, многие российские госсайты теперь активно блокируют внешние краулеры, особенно из других стран
- Автоматизация документирования датасетов и баз данных. Нарастающая по важности задача поскольку данных всё больше, документировать их вручную всё более болезненно. Есть наработки в виде инструмента metacrafter'а и рассеяного кода, но надо всё свести конкретную модель и архитектуру. Скорее всего это постепенно сдвигается в сторону повышения качества Dateno и нового качества поиска.
- Много неопубликованных датасетов. По многим странам, не только по РФ. Например, база всего законодательства Казахстана в структурированном виде. Данные готовы, но не оформлены, не описаны, недостаточно ещё задокументированы.
- Библиотека универсального доступа к каталогам данных. Очень давно об этом думаю о том как сделать универсальный инструмент для поиска и доступа к данным в типовых каталогах, CKAN, DKAN, DataVerse, GeoNode и десятку других. Потому что в этом есть необходимость и довольно актуальная. Возможно наиболее логично перенести это в Dateno и сдвинуть в сторону сбора метаданных.
- Перезапустить оценку понятности языка PlainRussian. Возможно отложенное надолго поскольку LLM'ки типа GPT умеют это лучше. Конкурировать с ними сложно и непонятно зачем. Туда же относится создание оценки понятности языка для других языков, таких как армянский язык. Ничего сложного в этом нет, но опять же LLM дают лучший результат.
- Незавершённые проекты в Open Data Armenia. Многое всё ещё существует в полусобранных проектах, надо собраться с мыслями и силами довести их до продуктового состояния и продолжать развивать сообщество не только конкурсами, но и общей инфраструктурой данных.
- Неопубликованные курсы. По веб архивации, по digital humanities, по data discovery и по автоматизации каталогизации данных и их извлечению. И про обработку данных новыми инструментами.
- Недописанные книги/тексты/мануалы. Их как-то очень много, про личные тексты написать отдельно надо, а про рабочие - это тексты/книга про то как устроены данные и, что даже важнее, метаданные.
Про более приоритетное, особенно про Dateno, я ещё напишу позже.
Передаю эстафету всем тем кто думает о несделанном и думает о грузе несделанного о за прошлый год и как это сделать в следующем году.
#endofyear #thoughts #thinking #plans