299K subscribers
3.99K photos
701 videos
17 files
4.57K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
加入频道
Brilliant post on #CS and #Software about strategy and psychology of Software Development, which is highly applicable to Data Science too.

“Imaginary Problems Are the Root of Bad Software”

https://medium.com/s/story/imaginary-problems-d4f2921bd1b8
Необычные материалы в робототехнике.

У каждого робота должен быть блестящий металлический зад, это знают все. Но в реальных роботах металла не так уж и много — с ним соседствуют пластики, композиты и силикон, а порой и совсем нестандартные субстанции: http://amp.gs/hCG8
How to train an algorithm to successfully pass the "Sonic The Hedgehog" game? Sergey Kolesnikov together with his team took the 4th place out of 900+ in the Open AI contest, and now is telling how to reach it. https://medium.com/swlh/at-the-speed-of-reinforcement-learning-an-openai-contest-story-6ed34fe7a3bb
mmdetection

mmdetection is an open source object detection toolbox based on PyTorch. It is a part of the open-mmlab project developed by Multimedia Laboratory, CUHK.

Major features
- Modular Design
One can easily construct a customized object detection framework by combining different components.
- Support of multiple frameworks out of box
The toolbox directly supports popular detection frameworks, e.g. Faster RCNN, Mask RCNN, RetinaNet, etc.
- Efficient
All basic bbox and mask operations run on GPUs now. The training speed is about 5% ~ 20% faster than Detectron for different models.
- State of the art
This was the codebase of the MMDet team, who won the COCO Detection 2018 challenge.

https://github.com/open-mmlab/mmdetection