которое опубликовал Илон Маск - выглядит интеерснее, чем может показаться на первый взгляд.
Впервые Optimus двигается в танце с участием нижней части тела —
раньше его ноги и ступни оставались неподвижными.
Если посмотреть последнее видео в замедленном режиме, можно заметить, что он не просто танцует — он подпрыгивает и держит равновесие на одной ноге.
Такой уровень динамического баланса и контроля невероятно сложно реализовать для человекоподобного робота.
С балансом у нового робота от Tesla — полный порядок!
Факты о роботе
🦿 1. Создан на базе автопилота Tesla
Optimus использует ту же систему обработки окружающего мира, что и автопилот Tesla — включая нейросети и камеры. Робот буквально «видит» как электромобиль Tesla.
⚙️ 2. Высота — 173 см, вес — около 56 кг
Это делает Optimus ростом со взрослого человека и достаточно лёгким, чтобы быть маневренным, но достаточно прочным для работы с физическими объектами.
🧠 3. Мозг — это Tesla FSD Chip
Внутри — собственный чип Tesla, разработанный для Full Self-Driving. Он обрабатывает видео в реальном времени и принимает решения, как вождения, так и манипуляций руками и телом.
🤖 4. Умеет поднимать до 20 кг и нести до 9 кг
Optimus спроектирован для выполнения задач, таких как переноска ящиков, компонентов на сборочных линиях и базовая логистика.
🎥 5. Первые версии уже помогают на фабрике Tesla
В 2023–2024 Tesla начала использовать Optimus на своих производственных линиях — например, для сортировки деталей и доставки мелких компонентов.
🕺 6. Новый уровень движения — он уже танцует и ходит
В 2025 году Optimus научился координировать движения нижней части тела. Ранее ноги были статичными — теперь он танцует, ходит и держит равновесие на одной ноге.
🔋 7. Полный день работы от одной зарядки
Цель — добиться автономной работы в течение рабочего дня на одном заряде, что делает его пригодным для фабрик и логистических центров.
🌍 8. Массовый рынок — конечная цель
Илон Маск заявил, что Optimus должен стоить меньше $20,000 — чтобы каждый мог позволить себе персонального робота.
@ai_machinelearning_big_data
#robots #ai #ml #Tesla #Optimus
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍125🔥45❤41😭9🤔6🤣6🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 Agibot и новый взгляд на форму робота
Проект Agibot предлагает переосмыслить привычный подход к дизайну роботов. Традиционно роботы создаются по образу человека — с двумя руками, двумя ногами, направленным вперёд зрением. Это объясняется тем, что окружающий мир спроектирован под человеческие потребности: лестницы, двери, инструменты.
Однако возникает вопрос: обязательно ли ограничиваться человеческой анатомией, а что если:
• Робот с тремя руками может выполнять больше задач одновременно
• Три ноги обеспечивают лучшую устойчивость на неровной поверхности
• Круговой обзор с помощью камер по периметру эффективнее человеческого зрения
🔧 Agibot демонстрирует первые шаги к объединению биомеханики и инженерного прагматизма. Вместо слепого копирования человека — попытка создать оптимальную форму для задач, стоящих перед роботами.
🚀 Будущее робототехники, возможно, лежит не в имитации, а в эволюции — с новыми решениями, выходящими за рамки антонимии человеческого тела.
@ai_machinelearning_big_data
#ai #robots #ml
Проект Agibot предлагает переосмыслить привычный подход к дизайну роботов. Традиционно роботы создаются по образу человека — с двумя руками, двумя ногами, направленным вперёд зрением. Это объясняется тем, что окружающий мир спроектирован под человеческие потребности: лестницы, двери, инструменты.
Однако возникает вопрос: обязательно ли ограничиваться человеческой анатомией, а что если:
• Робот с тремя руками может выполнять больше задач одновременно
• Три ноги обеспечивают лучшую устойчивость на неровной поверхности
• Круговой обзор с помощью камер по периметру эффективнее человеческого зрения
🔧 Agibot демонстрирует первые шаги к объединению биомеханики и инженерного прагматизма. Вместо слепого копирования человека — попытка создать оптимальную форму для задач, стоящих перед роботами.
🚀 Будущее робототехники, возможно, лежит не в имитации, а в эволюции — с новыми решениями, выходящими за рамки антонимии человеческого тела.
@ai_machinelearning_big_data
#ai #robots #ml
👍92🔥22❤18⚡3🤬2🌭2🥱1🎄1
This media is not supported in your browser
VIEW IN TELEGRAM
Соревнования: четыре команды операторов управляют роботами Unitree G1 в реальном времени. Формат — турнирные бои, где начисляют очки за удары разной степени (1 балл за удар руками, 3 за ноги).
@ai_machinelearning_big_data
#ai #robots #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍101❤29🔥26🤬8💅3😁2🥱1
Media is too big
VIEW IN TELEGRAM
PyRoki — это open-source библиотека на Python для задач управления движением роботов. Она решает одну из главных задач в робототехнике — инверсную кинематику (IK), то есть определяет, как двигаться суставам робота, чтобы достичь нужной точки.
▪️ Инверсная кинематика
▪️ Оптимизация траектории
▪️ Перенос движений между разными роботами (motion retargeting)
🚀 Установка
git clone https://github.com/chungmin99/pyroki.git
cd pyroki
pip install -e .
Чем хороша:
✅ Быстрее на 1.7× по сравнению с cuRobo
✅ Работает на CPU, GPU и даже TPU
✅ Написана полностью на Python — легко внедряется, не требует C++
✅ Подходит для промышленных роботов, симуляторов, гуманоидов
Подходит для:
— инженеров робототехники
— разработчиков симуляций
— ML-исследователей в motion planning
▪️ Репозиторий: https://github.com/chungmin99/pyroki
▪️ Сайт: http://pyroki-toolkit.github.io
▪️ Статья: https://arxiv.org/abs/2505.03728
@ai_machinelearning_big_data
#ai #ml #robots
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍72🔥26❤23🎄7
RoboBrain 2.0 — это open-source модель способная к широкому спектру задач: от восприятия окружения до управления роботами.
Её уже называют фундаментом для следующего поколения гуманоидов.
🔹 Поддерживает планирование, восприятие и действия в реальном мире
🔹 Заточен на легкую интеграцию (под капотом 7B параметров) в реальные проекты и роботизированные системы
🔹 Полностью открытый код
Архитектура:
• Обрабатывает изображения, длинные видео и визуальные данные высокого разрешения
• Понимает сложные текстовые инструкции
• Входные данные:
— Визуальные — проходят через Vision Encoder + MLP Projector
— Текстовые — превращаются в унифицированный токен-поток
• Всё подаётся в LLM Decoder, который выполняет рассуждение, строит планы, определяет координаты и пространственные связи
С такими темпами более чем реально, что уже к 2027 году мы увидим массовое производство продвинутых гуманоидных роботов.
ИИ выходит в физический мир — и делает это уверено.
Запуск:
git clone https://github.com/FlagOpen/RoboBrain2.0.git
cd RoboBrain
# build conda env.
conda create -n robobrain2 python=3.10
conda activate robobrain2
pip install -r requirements.txt
▪Github: https://github.com/FlagOpen/RoboBrain2.0
▪Hugging face: https://huggingface.co/collections/BAAI/robobrain20-6841eeb1df55c207a4ea0036/
@ai_machinelearning_big_data
#ai #ml #robots #ComputerVision #BAAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64🔥20❤17🥰3
This media is not supported in your browser
VIEW IN TELEGRAM
Как сгенерировать миллиард демо-примеров для обучения роботов?
Проект Dex1B показывает, как это сделать просто — с помощью симуляции и генеративных моделей!
📌 Цель проекта: создать масштабный датасет для двух задач:
● Grasping — захват объектов🖐️
● Articulation — манипуляции с подвижными частями робота
Как это работает:
1. Создание Seed-датасета
Сначала используется оптимизационный алгоритм, чтобы вручную (или полуавтоматически) собрать небольшой, но точный набор демонстраций — так называемый *Seed Dataset*.
2. Обучение генеративной модели
На основе Seed-датасета обучается DexSimple— простая C-VAE модель (Conditional Variational Autoencoder). Она умеет порождать новые сцены, основываясь на контексте: тип объекта, поза руки, желаемое взаимодействие.
3. Масштабирование до 1 миллиарда
С помощью DexSimple создаются миллиарды новых демонстраций. При генерации учитывается разнообразие поз и объектов: используется преднамеренное «смешение» данных, чтобы не переобучаться на узком распределении.
4. Симуляция и проверка
Все демонстрации валидируются в физическом симуляторе ManiSkill/SAPIEN. Только успешные взаимодействия остаются в финальном наборе.
✔️ Что внутри:
- Grasping-сцены (1 млн штук): построены на базе ассетов из Objaverse
- Articulation-сцены: используют объекты из PartNet-Mobility — богатая коллекция с подвижными частями (двери, ящики, рычаги и т.п.)
- Каждая сцена содержит: 3D-модель объекта, позу руки, физику взаимодействия и результат
Почему это важно:
- Ручной сбор миллиардов примеров невозможен — здесь это решается генеративным путём
- Dex1B создаёт разнообразные и физически валидные примеры
- Это открывает путь к масштабному обучению роботов с использованием имитационного обучения
🟡 Сайт проекта: https://jianglongye.com/dex1b)
🟡 Статья : https://jianglongye.com/dex1b/static/dex1b.pdf
@ai_machinelearning_big_data
#ai #robots #ml
Проект Dex1B показывает, как это сделать просто — с помощью симуляции и генеративных моделей!
● Grasping — захват объектов
● Articulation — манипуляции с подвижными частями робота
Как это работает:
1. Создание Seed-датасета
Сначала используется оптимизационный алгоритм, чтобы вручную (или полуавтоматически) собрать небольшой, но точный набор демонстраций — так называемый *Seed Dataset*.
2. Обучение генеративной модели
На основе Seed-датасета обучается DexSimple— простая C-VAE модель (Conditional Variational Autoencoder). Она умеет порождать новые сцены, основываясь на контексте: тип объекта, поза руки, желаемое взаимодействие.
3. Масштабирование до 1 миллиарда
С помощью DexSimple создаются миллиарды новых демонстраций. При генерации учитывается разнообразие поз и объектов: используется преднамеренное «смешение» данных, чтобы не переобучаться на узком распределении.
4. Симуляция и проверка
Все демонстрации валидируются в физическом симуляторе ManiSkill/SAPIEN. Только успешные взаимодействия остаются в финальном наборе.
- Grasping-сцены (1 млн штук): построены на базе ассетов из Objaverse
- Articulation-сцены: используют объекты из PartNet-Mobility — богатая коллекция с подвижными частями (двери, ящики, рычаги и т.п.)
- Каждая сцена содержит: 3D-модель объекта, позу руки, физику взаимодействия и результат
Почему это важно:
- Ручной сбор миллиардов примеров невозможен — здесь это решается генеративным путём
- Dex1B создаёт разнообразные и физически валидные примеры
- Это открывает путь к масштабному обучению роботов с использованием имитационного обучения
@ai_machinelearning_big_data
#ai #robots #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤38🔥21👍12🥰5
Основная идея VLMgineer - путь к роботам, которые сами изобретают нужные приборы под конкретные задачи, экономя время инженеров и расширяя границы автоматизации.
Что это
● Фреймворк, объединяющий Vision-Language-модель и эволюционный поиск.
● Полностью автоматизирует два процесса:
1) проектирует физический инструмент;
2) пишет пошаговый план, как этим инструментом пользоваться.
Как это работает
1️⃣ VLM получает описание задачи («забей гвоздь», «разбей лёд») и создаёт начальный эскиз инструмента + набор движений робота.
2️⃣ Симуляция проверяет, насколько успешно связка «инструмент + действие» решает задачу.
3️⃣ Эволюционный алгоритм вносит правки (меняет форму, размеры, материалы), VLM уточняет план.
4️⃣ Цикл повторяется, пока не найден оптимальный дизайн.
Никаких шаблонов и ручной настройки — всю «физическую креативность» выполняет модель.
Исследователи протестировали возможности VLMgineer по созданию инструментов и планов действий в сравнении с тремя типами участников:
• специалист по LLM
• эксперт по робототехнике
• обычный человек без технического бэкграунда
📊 Результаты:
VLMgineer показал на 64,7% более высокий средний успех выполнения задач, чем решения, предложенные людьми, скоро обещают дропнуть код проекта.
@ai_machinelearning_big_data
#ai #robots #vlm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤45👍21🔥13⚡1🥰1🌭1
🤖 Gemini Robotics: автономный AI для роботов
Google представили Gemini Robotics On-Device — первую модель, объединяющую зрение, язык и действия, которая работает прямо на роботах, без постоянного подключения к интернету.
🔍 Что делает эту модель особенной:
🔹 Объединяет универсальность и точность Gemini, но работает локально
🔹 Моделька справляется со сложными задачами с двумя руками (манипуляции, сборка, перенос)
🔹 Обучается новым действиям всего по 50–100 демкам
Модель уже поддерживает разные типы роботов — от гуманоидов до промышленных двухруких манипуляторов. И это несмотря на то, что изначально она была обучена только на датасете ALOHA под управлением человеческих инструкций.
🛠 В догонку выпустили SDK Gemini Robotics — для разработчиков, которые хотят дообучить модель под свои нужды, включая тесты в физическом симуляторе MuJoCo.
🌐 Полностью автономная работа — идеально для кейсов с плохой связью или требованиями к высокой скорости отклика.
Gemini Robotics продолжает двигаться к будущему, где AI становится частью физического мира.
👉 Подробнее: https://goo.gle/gemini-robotics-on-device
@ai_machinelearning_big_data
#ai #robots #vlm #google #Gemini
Google представили Gemini Robotics On-Device — первую модель, объединяющую зрение, язык и действия, которая работает прямо на роботах, без постоянного подключения к интернету.
🔍 Что делает эту модель особенной:
🔹 Объединяет универсальность и точность Gemini, но работает локально
🔹 Моделька справляется со сложными задачами с двумя руками (манипуляции, сборка, перенос)
🔹 Обучается новым действиям всего по 50–100 демкам
Модель уже поддерживает разные типы роботов — от гуманоидов до промышленных двухруких манипуляторов. И это несмотря на то, что изначально она была обучена только на датасете ALOHA под управлением человеческих инструкций.
🛠 В догонку выпустили SDK Gemini Robotics — для разработчиков, которые хотят дообучить модель под свои нужды, включая тесты в физическом симуляторе MuJoCo.
🌐 Полностью автономная работа — идеально для кейсов с плохой связью или требованиями к высокой скорости отклика.
Gemini Robotics продолжает двигаться к будущему, где AI становится частью физического мира.
👉 Подробнее: https://goo.gle/gemini-robotics-on-device
@ai_machinelearning_big_data
#ai #robots #vlm #google #Gemini
❤41👍25🔥10🥰2
This media is not supported in your browser
VIEW IN TELEGRAM
🔋Робот, умеющий сам менять себе батарею
Китайская компания UBTech представила Walker S2 — гуманоидного робота нового поколения, способного автономно извлекать и заменять собственную батарею.
@ai_machinelearning_big_data
#ai #ml #robots
Китайская компания UBTech представила Walker S2 — гуманоидного робота нового поколения, способного автономно извлекать и заменять собственную батарею.
@ai_machinelearning_big_data
#ai #ml #robots
👍148❤45🔥19😢9😁4🤬4🦄2🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
Новый четырёхногий робот весом всего 37 кг
Работа стал: Легче, Прочнее, Быстрее.
Разработан специально для промышленных задач, где важны автономность, манёвренность и надёжность.
Инженерная мощь нового поколения — в компактном корпусе.
@ai_machinelearning_big_data
#ai #robots #Unitree
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥65👍27❤16🥱4👾2🍾1😭1
Media is too big
VIEW IN TELEGRAM
🦾 Boston Dynamics показали впечатляющее видео своего робота.
Atlas получает изображение с камеры, данные о положении тела и текстовую команду. На основе этого модель генерирует плавные движения всего корпуса 30 раз в секунду.
Это не набор хрупких скриптов, а система, которая сама «думает», как выйти из ситуации.
Робот показывает, что может работать в реальном бардаке, где всё падает, двигается и мешает работе.
@ai_machinelearning_big_data
#ai #robots #BostonDynamics #atlas
Atlas получает изображение с камеры, данные о положении тела и текстовую команду. На основе этого модель генерирует плавные движения всего корпуса 30 раз в секунду.
Это не набор хрупких скриптов, а система, которая сама «думает», как выйти из ситуации.
Вместо того чтобы «прыгать» от точки к точке, система сразу строит короткую последовательность действий — примерно на полторы секунды вперёд.
Часть из них выполняется, а потом план обновляется, чтобы движения оставались точными и естественными.
Робот показывает, что может работать в реальном бардаке, где всё падает, двигается и мешает работе.
@ai_machinelearning_big_data
#ai #robots #BostonDynamics #atlas
🔥124❤40👍33😨7🦄3
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 Демонстрация Unitree G1 прошла на UFC Shanghai
Президент UFC Дана Уайт столкнулся с неожиданным приемом робота на шоу в Шанхае.
В мае те же G1 участвовали в «Mecha Fighting Series» на World Robot Competition в Ханчжоу
Живые спорт-ивенты всё чаще становятся витриной для робототехники.
@ai_machinelearning_big_data
#Unitree #ufc #robots
Президент UFC Дана Уайт столкнулся с неожиданным приемом робота на шоу в Шанхае.
В мае те же G1 участвовали в «Mecha Fighting Series» на World Robot Competition в Ханчжоу
Живые спорт-ивенты всё чаще становятся витриной для робототехники.
@ai_machinelearning_big_data
#Unitree #ufc #robots
👍51😁11❤9🥰3
This media is not supported in your browser
VIEW IN TELEGRAM
Инженеры показали гуманоида, играющего в настольный теннис и способного отбить 106 ударов подряд.
Работает полностью автономно, без телоуправления.
- Планировщик прогнозирует траекторию мяча и выбирает точку, время и скорость удара.
- Контроллер на основе RL превращает план в согласованные движения рук и ног, удерживая баланс при замахе.
- Обучение основано на видео с реальных матчей, поэтому удары выглядят естественно, а не «роботизировано».
- Контур управления работает быстрее секунды, что позволяет вести долгие розыгрыши без сбоев.
@ai_machinelearning_big_data
#Berkeley #robots
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19❤18🔥9🥰2💘1