288K subscribers
3.97K photos
683 videos
17 files
4.55K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
加入频道
✔️ Неделя Опенсорса от DeepSeek продолжается!

Только что китайцы представили DeepEP — это библиотека, разработанная для оптимизации работы моделей с архитектурой Mixture-of-Experts (MoE) и параллелизмом экспертов (EP).

Ее основная задача — обеспечить высокую пропускную способность и низкую задержку при обмене данными между GPU, что критически важно для эффективного обучения и инференса крупных моделей.

Что внутри
Высокая производительность:
- Библиотека предоставляет оптимизированные all-to-all GPU ядра для операций распределения (dispatch) и объединения (combine) данных, что улучшает скорость и эффективность коммуникации между экспертами в модели.

- DeepEP поддерживает операции с пониженной точностью, включая формат FP8, что способствует снижению требований к памяти и увеличению скорости вычислений без значительной потери точности.

- Оптимизация под различные домены: В соответствии с алгоритмом группового ограниченного гейтинга, предложенным в работе DeepSeek-V3, библиотека предлагает набор ядер, оптимизированных для асимметричной передачи данных между различными доменами, такими как NVLink и RDMA. Это обеспечивает высокую пропускную способность при обучении и инференсе.

- Низкая задержка для инференса: Для задач, чувствительных к задержкам, DeepEP включает набор ядер с чистой RDMA, минимизируя задержки и обеспечивая быструю обработку данных во время инференса.

- Работает как с NVLink, так и с RDMA, что позволяет организовать высокопроизводительную связь между GPU как в рамках одного сервера, так и между разными серверами.

Принцип работы:

DeepEP интегрируется в существующие рабочие процессы обучения и инференса моделей с архитектурой MoE, предоставляя эффективные механизмы для обмена данными между GPU. Используя оптимизированные коммуникационные ядра, библиотека обеспечивает быструю и надежную передачу данных, что особенно важно при работе с крупными моделями и распределенными системами. Поддержка операций с пониженной точностью и оптимизация под различные домены позволяют гибко настраивать систему под конкретные требования и аппаратные возможности.

Использование DeepEP способствует повышению эффективности и производительности моделей MoE, облегчая их масштабирование и ускоряя процессы обучения и инференса.

Github

@ai_machinelearning_big_data


#ai #deepseek #opensource #DeepEP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍44🔥168
✔️ 3 день недели Опенсорса от DeepSeek

⭐️ DeepGEMM — это не просто очередная библиотека для матричных умножений, а настоящий «мастер-класс» по оптимизации FP8 GEMM для новейших GPU.

Проект написан на CUDA и рассчитан исключительно на использование тензорных ядер архитектуры NVIDIA Hopper, что уже само по себе делает его очень современным 🖥

В основе DeepGEMM лежит идея максимально эффективного выполнения операций умножения матриц с использованием 8-битной точности.

Для решения проблемы накопления в FP8 (которое может давать неточные результаты) разработчики внедрили двухуровневое накопление, которое использует возможности CUDA-ядра для повышения точности без потери производительности.

Что действительно радует – это минимализм кода.

Ядро библиотеки представлено всего в одном ключевом модуле, состоящем примерно из 300 строк, что позволяет легко разобраться в его работе и даже внести собственные улучшения.

При этом все ядра компилируются «на лету» с помощью легковесного JIT-компилятора, так что нет долгого этапа сборки при установке.

DeepGEMM поддерживает разные режимы работы: обычные GEMM для плотных моделей, а также группированные операции для моделей типа Mix-of-Experts, где требуется обрабатывать данные в нескольких форматах – как в «континуальном», так и в «masked» виде. Это особенно актуально для современных решений в области глубокого обучения.

Оптимизации, заложенные в DeepGEMM, включают использование новых функций Hopper, таких как Tensor Memory Accelerator (TMA) для асинхронной передачи данных, а также тонкую настройку блоковых размеров и оптимизацию инструкций FFMA для лучшего перекрытия вычислений и загрузки данных. Результаты говорят сами за себя: производительность этой библиотеки на ряде тестовых примеров сравнима или даже превосходит решения, построенные на базе CUTLASS.

DeepGEMM – это лаконичный и эффективный инструмент, который может послужить отличной базой для исследований и практических разработок в области ускорения вычислений для глубокого обучения.

Github


#ai #deepseek #opensource #DeepEP #OpenSourceWeek:
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥43👍2216🥰2😴1
✔️ OpenAI открыла доступ к Advanced Voice для всех.

С 26 февраля Advanced Voice на базе GPT-4o mini доступна бесплатным пользователям ChatGPT на всех платформах.

Free tier имеет ежедневные ограничения на использование входных и выходных аудиоданных. Пользователи ChatGPT Plus могут использовать полную версию Advanced Voice на основе GPT-4o с дневным лимитом, который в 5 раз превышает лимит бесплатной версии, и могут продолжать использовать функции видео и демонстрации экрана в расширенном голосовом режиме. Подписчики ChatGPT Pro не имеют дневного лимита.
OpenAI в X

✔️ Microsoft Copilot voice и deepthink теперь бесплатны и не имеют ограничений.

Microsoft открыла всем пользователям бесплатный доступ к функциям «Think Deeper» и голосовому управлению Copilot, а также снимет предыдущие ограничения на использование для бесплатных пользователей. Это означает, что пользователи могут вести неограниченное количество "бесед" и голосовых взаимодействий с Copilot. Think Deeper работает на основе модели логического вывода OpenAI o1, которую Microsoft сделала бесплатной в прошлом месяце.
microsoft.com

✔️ Hume AI открыла доступ к Octave: ТTS-модель, которая умеет говорить с эмоциями.

Octave, TTS-модель, анонсированная в конце декабря 2024 года, стала доступной через web и API. Модель умеет не просто "читать" слова, а понимает их смысл в контексте. Octave способна отыгрывать персонажей, генерировать голоса по запросу и изменять эмоциональную окраску и стиль речи.

Благодаря функции Voice Design, Octave может создать любой ИИ-голос по текстовому описанию. От "терпеливого, чуткого консультанта с голосом ASMR" до "средневекового рыцаря" – Octave воплотит любую фантазию. В ближайшем будущем планируется запуск функции клонирования голоса.

В ходе слепого сравнительного исследования, Octave превзошла систему ElevenLabs Voice Design по качеству звука (71,6%), естественности (51,7%) и соответствию голоса заданному описанию (57,7%).
hume.ai

✔️DeepSeek снижает цены на использование своих AI-моделей в непиковые часы.

DeepSeek объявил о введении скидок до 75% на использование своих AI-моделей в непиковые часы. Это решение может оказать давление на конкурентов как в Китае, так и за рубежом, вынуждая их пересматривать свои ценовые стратегии. Согласно информации на сайте компании, в период с 16:30 до 00:30 по Гринвичу стоимость использования API DeepSeek будет значительно снижена. Для моделей R1 и V3 скидки составят 75% и 50% соответственно.
reuters.com

✔️ SSD Samsung Pro-серии Gen 5 PCIe поступят в продажу в марте.

Samsung выпустит первую потребительскую серию PCIe 5.0 SSD 9100 Pro в марте. Впервые среди NVMe SSD от Samsung в линейке будет модель с 8 ТБ (ожидается, что будет доступен во второй половине 2025 года). В спецификации M.2 предусмотрены две дополнительные версии с радиатором или без него, с тремя конфигурациями: 1 ТБ (199,99 долл. США), 2 ТБ (299,99 долл. США) и 4 ТБ (549,99 долл. США).

Серия 9100 Pro демонстрирует значительные улучшения: в ней используется специализированный контроллер и флэш-память V-NAND TLC 7-го поколения. В синтетических тестах скорости последовательного чтения и записи достигают 14,8 ГБ/с и 13,4 ГБ/с, что вдвое больше, чем у предыдущего поколения 980 Pro и примерно на 2–3 ГБ/с быстрее, чем у конкурирующих продуктов, а производительность случайного чтения и записи улучшена до 2200 тыс./2600 тыс. IOPS, что более чем 2х превышает показатели PCIe 4.0.
news.samsung.com

✔️ Свежий релиз Microsoft Phi‑4 mini instruct — это компактная, оптимизированная модель на 3.8 млрд параметров, оптимизированная для вычислительно ограниченных сред
Hf

@ai_machinelearning_big_data

#news #ai #ml #microsoft #openai #DeepSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3915🔥11
✔️ 5 день недели опенсорса: и новый релиз от DeepSeek

DeepSeek представили Fife-Flyer File System (3FS) – параллельную файловую систему, способную использовать всю пропускную способность современных SSD и RDMA-сетей.

▶️ Это решение показывает впечатляющие результаты:

• 6.6 TiB/s – суммарная скорость чтения в 180-узловом кластере
• 3.66 TiB/min – пропускная способность на GraySort в 25-узловом кластере
• 40+ GiB/s – пик производительности KVCache lookup на одном клиентском узле

Архитектура 3FS дезагрегирована и обеспечивает строгую согласованность, что делает её незаменимой для задач предварительной обработки данных, загрузки датасетов, сохранения контрольных точек и быстрого поиска эмбеддингов во время инференса (V3/R1).

Показатели 3FS демонстрируют, что будущее обработки данных лежит в использовании распределенных и дезагрегированных архитектур, где каждая компонента системы работает на максимуме своих возможностей.

В дополнение к Fife-Flyer File System, представлен Smallpond – фреймворк для обработки данных на базе этой системы, который помогает ещё больше упростить рабочие процессы с большими объёмами информации.

3FSgithub.com/deepseek-ai/3FS
Smallpondgithub.com/deepseek-ai/smallpond

@ai_machinelearning_big_data


#OpenSourceWee #DeepSeek #Smallpond #3FS #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64🔥238👻2👏1😁1
🚀 6 День недели опенсорса: DeepSeek-V3/R1 Inference System!

DeepSeek выкатил подробный обзор своего инференса для моделей DeepSeek-V3/R1 – с акцентом на архитектурные инновации и невероятную экономическую эффективность.

DeepSeq R1 ежедневно приносит более $560 000, причем затраты на GPU составляют всего $87 000. Что озночает рентабельность в 545 %.

При таких расчетах теоретическая годовая выручка могла бы превысить $200 млн.

Компания также отметила, что затраты на обучение моделей составили менее $6 млн. Для сравнения, американские конкуренты, такие как OpenAI, инвестируют миллиарды долларов в обучение ИИ с использованием чипов NVIDIA H100. DeepSeek использует менее мощные NVIDIA H800, но это не мешает её моделям успешно конкурировать на глобальном рынке.

Данные за 24 часа:
– Входные токены: 608 млрд (с 56.3% cache hit rate)
– Выходные токены: 168 млрд при скорости 20–22 токена/с

Разительный контраст с американскими конкурентами, работающими в убыток.

Такой уровень доходности достигается за счёт оптимизированного распределения вычислений и гибкой архитектуры.

🌟 В DeepSeek-V3/R1 используется Cross-node Expert Parallelism (EP) — метод, при котором модель делится между GPU-узлами, а каждая видеокарта обрабатывает лишь небольшую часть модели. Эксперты распределяются между узлами кластера, что снижает нагрузку на память GPU, увеличивает размер батча и позволяет равномерно загружать видеокарты, избегая простоев. Это ускоряет вычисления и минимизирует задержки.

🌟 Для обработки данных DeepSeek-V3/R1 использует двухфазную стратегию инференса.

1) Prefilling фаза — здесь bспользуется EP32, где каждый GPU получает 9 направляемых экспертов и 1 общего эксперта, что позволяет минимизировать расходы на обработку данных.

2) Для Decoding используется EP144, перераспределяющий нагрузку так, что каждый GPU управляет 2 направляемыми экспертами и 1 общим экспертом. Такая стратегия помогает достичь высокой производительности без потери качества ответа.

– ~73.7k токенов/с для prefilling
– ~14.8k токенов/с для декодинга на одном узле H800

Данные за 24 часа:
– Входные токены: 608 млрд (с 56.3% cache hit rate)
– Выходные токены: 168 млрд при скорости 20–22 токена/с


🔗 Подробнее: *клик*

@ai_machinelearning_big_data


#AI #DeepLearning #DeepSeek #ml #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
32👍22🔥10👏1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ DeepSeek V3 strikes again!

На HF Появилась новая версия DeepSeek v3.

Еще Deepseek обновили свое приложение.

Страданиям OPENAI не будет конца 😂

~700GB, Лицензирование: mit, тестим тут.

Вы можете запустить его на компьютере M3 Mac Studio с 512 ГБ памяти, ( ~10 000 долларов) если используете квантованную версию на 352 ГБ через MLX.

🟡 HF :https://huggingface.co/deepseek-ai/DeepSeek-V3-0324/tree/main

@ai_machinelearning_big_data

#deepseek
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9125🤣14🔥12🤷‍♂2
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ DeepSite на базе DeepSeek-V3-0324, позволяет генерировать, код, приложения или игры прямо в браузере и хостить их.

Сгенерировал парочку простеньких HTML-игр с интерфейсом, работает годно.

😶 По сути это Сursor в браузере.

🟡Попробовать: https://huggingface.co/spaces/enzostvs/deepsite

@ai_machinelearning_big_data


#deepseek #vibecoding #app
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥108👍3418😁9🤩2😨1
🔥 DeepSeek-GRM

Команда DeepSeek представила DeepSeek-GRM (Generalist Reward Modeling) - новую систему для моделирования вознаграждения (RM), цель которой - улучшить согласованность LLM с общими запросами (general query alignment).

✔️ Ключевая идея: Использовать дополнительные вычисления во время инференса для динамического улучшения и масштабирования оценки вознаграждения, отходя от чисто статических RM.

✔️ Как работает: Комбинирует генеративное RM (GRM), метод обучения Self-Principled Critique Tuning (SPCT - модель учится сама генерировать принципы и критику через RL), параллельный сэмплинг и голосование во время инференса.

✔️ Результаты: Подход превосходит существующие базовые модели на RM-бенчмарках, не теряя в качестве.

DeepSeek-GRM предлагает новый масштабируемый способ построения более надежных и универсальных систем вознаграждения.

DeepSeek-GRM-27B с масштабированием во время инференса показывает SOTA (или близкие к SOTA) результаты на RM бенчмарках, будучи при этом эффективнее по параметрам, чем гигантские модели, и имея меньше проблем с систематическими ошибками.

🟡Метод обучения SPCT улучшает способность GRM к генерации вознаграждения для общих задач (generalist capability) и его масштабируемость во время инференса.

LLM-as-a-Judge показывает схожие показатели, но с более низкой производительностью.

Это интересный вектор развития RM, переносящий часть "интеллекта" оценки на этап инференса для повышения качества моделей.

🟡 Подробности в статье

#LLM #AI #MachineLearning #RewardModeling #DeepSeek #ReinforcementLearning #NLP #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍46🔥167🤬1
✔️ DeepSeek выпустила в оперсорс механизмы инференса для DeepSeek-V3 и R1.

DeepSeek объявила о публикации в открытый доступ кода своего механизма инференса, построенного на vLLM. Компания будет предоставлять отдельные функции и оптимизации из своей внутренней инфраструктуры, специально разработанные для ее моделей DeepSeek-V3 и R1.
Этот шаг - часть стратегии поддержки будущих моделей с доступом к улучшениям в сообществе разработчиков с открытым исходным кодом. Кроме того, DeepSeek опубликовала дорожную карту, в которой подробно описана стратегия использования открытого кода и планы сотрудничества с существующими оперсорс-проектами для расширения экосистемы инфраструктуры ИИ.

🔜 DeepSeekAI на Github

@ai_machinelearning_big_data


#DeepSeek #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
285👍40🔥16🤔5
🔥 А вот и новый DeepSeek Prover v2, модель, заточенная исключительно на математику.

🚀Масштабная архитектура на базе, которая содержит 671 млрд параметров, что в 96 раз больше, чем у предыдущей версии Prover-V1.5 (7 млрд).

Построен на базе архитектуры «смеси экспертов» (MoE), что снижает затраты на обучение и повышает эффективность решения задач.

Модель заточена на формальное доказательство теорем с помощью языка программирования Lean 4, обеспечивая 100% логическую точность.

Lean 4 — это зависимо типизированный функциональный язык программирования и интерактивное средство доказательства теорем.

Результаты:
Новая Sota( 88,9%) на MiniF2F-test.
DeepSeek-Prover-V2 смогла доказать 49 теорем из 658.

Для тренировки использовались 8 млн синтетических примеров, созданных через рекурсивный поиск решений теорем.

🔍 Как это работает:

1) Разложение теорем: DeepSeek-V3 по prompt'у разбивает сложные задачи на подцели.

2) Формализация: Пошаговые рассуждения переводятся в доказательства на Lean 4.

3) Cold-start: Полученные цепочки рассуждений и формальные доказательства используются как начальные данные для обучения модели.

🌟 Два размера:
7 B — базовый вариант.
671 B — расширенная версия на базе DeepSeek-V3-Base.

https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B

@ai_machinelearning_big_data

#DeepSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
👍89🔥3621👌5😍5
✔️ Релиз DeepSeek R1-0528

Главное:
• Глубокое рассуждение — на уровне моделей Google
• Улучшена генерация текста — более естественно, структурировано и аккуратно
• Уникальный стиль reasoning — не просто быстро, а вдумчиво и последовательно
• Может работать над одной задачей 30–60 минут, удерживая контекст

Новая модель показывает результат почти на уровне o3 (High) на бенчмарк LiveCodeBench.

https://huggingface.co/deepseek-ai/DeepSeek-R1-0528

@ai_machinelearning_big_data

#DeepSeek #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
👍101🔥3524😁9🥱5❤‍🔥4🙈1🎄1
🐋 Гигантский кит приплыл на HF!

🚀 DeepSeek раскатывает Base релиз новой версии V3.1 — гибридной модели, способной совмещать рассуждения и быстрые задачи.

Следите за новостями, волна только набирает силу.

685B параметров
📏 Контекстное окно 128k

https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Base

@ai_machinelearning_big_data

#DeepSeek #AI #LLM #V3_1 #MachineLearning
🔥9725👍23🐳5😨5🎉1
🐋 DeepSeek-V3.1 теперь можно запускать локально

Оригинальная модель весила 715GB, но её удалось уменьшить до 170GB RAM (−80%) с помощью новой техники квантовки Dynamic 1-bit GGUF.

Огромная экономия памяти

👉 Подробный гайд: https://docs.unsloth.ai/basics/deepseek-v3.1
👉 GGUF-модель: https://huggingface.co/unsloth/DeepSeek-V3.1-GGUF

Теперь топовую DeepSeek реально запустить даже на локальной машине, а не только в дата-центре 🚀

@ai_machinelearning_big_data

#DeepSeek #GGUF
115🔥48🤣45👍24🤔8🌚42🙈2