Python/ django
58.9K subscribers
2.07K photos
61 videos
47 files
2.79K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
加入频道
🖥 ​NVIDIA Warp

Мощный фреймворк Python для высокопроизводительного моделирования графического процессора и графики.

Ядра определяются в синтаксисе Python, а JIT преобразуются в C++/CUDA и компилируются во время выполнения.

Warp поможет вам упростить написание программ для физического моделирования, обработки геометрии и процедурной анимации графики.

Кроме того, ядра Warp являются дифференцируемыми и могут использоваться как часть конвейеров машинного обучения с такими фреймворками, как PyTorch и JAX.

#Python #Cuda #Cpp #Graphics #nvidia

Github
Документация

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 NVIDIA добавила нативную поддержку Python в CUDA.

Python уже несколько лет уверенно лидирует среди языков программирования, а теперь стал ещё ближе к железу. На GTC 2025 NVIDIA объявила о полноценной интеграции Python в свой CUDA-стек.

Это значит, что писать код для GPU можно будет напрямую на Python — без погружения в C++ или Fortran. Как подчеркнул Стивен Джонс, архитектор CUDA, цель — сделать инструмент естественным для Python-разработчиков: «Это не перевод синтаксиса C на Python. Все должно работать так, как привыкли разработчики».

Раньше CUDA требовала глубокого понимания низкоуровневых языков и это здорово ограничивало аудиторию. Сейчас, когда Python стал стандартом в ML и DS, NVIDIA открывает двери для миллионов программистов. По данным The Futurum Group, в 2023 году CUDA использовали 4 миллиона человек — теперь их число может резко вырасти.

Техническая часть такая же обширная, как и ожидания этого события профессиональным сообществом.

🟢Во-первых, появилась библиотека cuPyNumeric — аналог NumPy, который переносит вычисления с CPU на GPU буквально заменой импорта.

🟢Во-вторых, CUDA Core переосмыслен для Python: здесь сделан упор на JIT-компиляцию и минимизацию зависимостей.

🟢В-третьих, добавлены инструменты для профилирования и анализа кода, а ускоренные C++-библиотеки теперь доступны из Python без потерь в производительности.

Но главное — новый подход к параллельным вычислениям. Вместо ручного управления потоками, как в C++, NVIDIA предлагает модель CuTile, которая оперирует массивами, а не отдельными элементами. Это упрощает отладку и делает код читаемым, не жертвуя скоростью. По сути, разработчики получают высокоуровневую абстракцию, скрывающую сложности железа, но сохраняющую гибкость.

Пока CuTile доступен только для Python, но в планах — расширение для C++. Это часть стратегии NVIDIA по поддержке новых языков: Rust и Julia уже на походе.

Python-сообщество уже может экспериментировать — например, интегрировать CUDA-ядра в PyTorch или вызывать привычные библиотеки. Теперь даже те, кто никогда не писал на C++, смогут использовать всю мощь GPU — осталось проверить, как это скажется на скорости создания прекрасных LLM светлого будущего.

🔜 Посмотреть полную презентацию на GTC 2025


@ai_machinelearning_big_data

#AI #ML #Python #CUDA #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM