Machine learning books and papers
22.9K subscribers
976 photos
54 videos
928 files
1.32K links
Admin: @Raminmousa
Watsapp: +989333900804
ID: @Machine_learn
link: https://yangx.top/Machine_learn
加入频道
OmniParser for Pure Vision Based GUI Agent

1 Aug 2024 · Yadong Lu, Jianwei Yang, Yelong Shen, Ahmed Awadallah

The recent success of large vision language models shows great potential in driving the agent system operating on user interfaces. However, we argue that the power multimodal models like GPT-4V as a general agent on multiple operating systems across different applications is largely underestimated due to the lack of a robust screen parsing technique capable of: 1) reliably identifying interactable icons within the user interface, and 2) understanding the semantics of various elements in a screenshot and accurately associate the intended action with the corresponding region on the screen. To fill these gaps, we introduce \textsc{OmniParser}, a comprehensive method for parsing user interface screenshots into structured elements, which significantly enhances the ability of #GPT-4V to generate actions that can be accurately grounded in the corresponding regions of the interface. We first curated an interactable icon detection dataset using popular webpages and an icon description dataset. These datasets were utilized to fine-tune specialized models: a detection model to parse interactable regions on the screen and a caption model to extract the functional semantics of the detected elements. \textsc{#OmniParser} significantly improves GPT-4V's performance on ScreenSpot benchmark. And on #Mind2Web and AITW benchmark, \textsc{OmniParser} with screenshot only input #outperforms the GPT-4V baselines requiring additional information outside of screenshot.

Paper: https://arxiv.org/pdf/2408.00203v1.pdf

Code: https://github.com/microsoft/omniparser

Dataset: ScreenSpot


@Machine_learn
👍3