https://yangx.top/datasets1/668
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🥰2🔥1
🚀 New Tutorial: Automatic Number Plate Recognition (ANPR) with YOLOv11 + GPT-4o-mini!
This hands-on tutorial shows you how to combine the real-time detection power of YOLOv11 with the language understanding of GPT-4o-mini to build a smart, high-accuracy ANPR system! From setup to smart prompt engineering, everything is covered step-by-step. 🚗💡
🎯 Key Highlights:
✅ YOLOv11 + GPT-4o-mini = High-precision number plate recognition
✅ Real-time video processing in Google Colab
✅ Smart prompt engineering for enhanced OCR performance
📢 A must-watch if you're into computer vision, deep learning, or OpenAI integrations!
🔗 Colab Notebook
▶️ Watch on YouTube
#YOLOv11 #GPT4o #OpenAI #ANPR #OCR #ComputerVision #DeepLearning #AI #DataScience #Python #Ultralytics #MachineLearning #Colab #NumberPlateRecognition
🔍 By : https://yangx.top/DataScienceN
This hands-on tutorial shows you how to combine the real-time detection power of YOLOv11 with the language understanding of GPT-4o-mini to build a smart, high-accuracy ANPR system! From setup to smart prompt engineering, everything is covered step-by-step. 🚗💡
🎯 Key Highlights:
✅ YOLOv11 + GPT-4o-mini = High-precision number plate recognition
✅ Real-time video processing in Google Colab
✅ Smart prompt engineering for enhanced OCR performance
📢 A must-watch if you're into computer vision, deep learning, or OpenAI integrations!
🔗 Colab Notebook
▶️ Watch on YouTube
#YOLOv11 #GPT4o #OpenAI #ANPR #OCR #ComputerVision #DeepLearning #AI #DataScience #Python #Ultralytics #MachineLearning #Colab #NumberPlateRecognition
🔍 By : https://yangx.top/DataScienceN
👍2❤1🔥1
🎓 2025 Top IT Certification – Free Study Materials Are Here!
🔥Whether you're preparing for #Cisco #AWS #PMP #Python #Excel #Google #Microsoft #AI or any other in-demand certification – SPOTO has got you covered!
📘 Download the FREE IT Certs Exam E-book:
👉 https://bit.ly/4lNVItV
🧠 Test Your IT Skills for FREE:
👉 https://bit.ly/4imEjW5
☁️ Download Free AI Materials :
👉 https://bit.ly/3F3lc5B
📞 Need 1-on-1 IT Exam Help? Contact Now:
👉 https://wa.link/k0vy3x
🌐 Join Our IT Study Group for Daily Updates & Tips:
👉 https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
🔥Whether you're preparing for #Cisco #AWS #PMP #Python #Excel #Google #Microsoft #AI or any other in-demand certification – SPOTO has got you covered!
📘 Download the FREE IT Certs Exam E-book:
👉 https://bit.ly/4lNVItV
🧠 Test Your IT Skills for FREE:
👉 https://bit.ly/4imEjW5
☁️ Download Free AI Materials :
👉 https://bit.ly/3F3lc5B
📞 Need 1-on-1 IT Exam Help? Contact Now:
👉 https://wa.link/k0vy3x
🌐 Join Our IT Study Group for Daily Updates & Tips:
👉 https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
👍1🔥1
𝑯𝒐𝒎𝒐𝒈𝒓𝒂𝒑𝒉𝒚 𝒂𝒏𝒅 𝑲𝒆𝒚𝒑𝒐𝒊𝒏𝒕 𝒇𝒐𝒓 𝑭𝒐𝒐𝒕𝒃𝒂𝒍𝒍 𝑨𝒏𝒂𝒍𝒚𝒕𝒊𝒄𝒔 ⚽️📐
🚀 Highlighting the latest strides in football field analysis using computer vision, this post shares a single frame from our video that demonstrates how homography and keypoint detection combine to produce precise minimap overlays. 🧠🎯
🧩 At the heart of this project lies the refinement of field keypoint extraction. Our experiments show a clear link between both the number and accuracy of detected keypoints and the overall quality of the minimap. 🗺️
📊 Enhanced keypoint precision leads to a more reliable homography transformation, resulting in a richer, more accurate tactical view. ⚙️⚡
🏆 For this work, we leveraged the championship-winning keypoint detection model from the SoccerNet Calibration Challenge:
📈 Implementing and evaluating this state‑of‑the‑art solution has deepened our appreciation for keypoint‑driven approaches in sports analytics. 📹📌
🔗 https://lnkd.in/em94QDFE
📡 By: https://yangx.top/DataScienceN
#ObjectDetection hashtag#DeepLearning hashtag#Detectron2 hashtag#ComputerVision hashtag#AI
hashtag#Football hashtag#SportsTech hashtag#MachineLearning hashtag#ComputerVision hashtag#AIinSports
hashtag#FutureOfFootball hashtag#SportsAnalytics
hashtag#TechInnovation hashtag#SportsAI hashtag#AIinFootball hashtag#AI hashtag#AIandSports hashtag#AIandSports
hashtag#FootballAnalytics hashtag#python hashtag#ai hashtag#yolo hashtag
🚀 Highlighting the latest strides in football field analysis using computer vision, this post shares a single frame from our video that demonstrates how homography and keypoint detection combine to produce precise minimap overlays. 🧠🎯
🧩 At the heart of this project lies the refinement of field keypoint extraction. Our experiments show a clear link between both the number and accuracy of detected keypoints and the overall quality of the minimap. 🗺️
📊 Enhanced keypoint precision leads to a more reliable homography transformation, resulting in a richer, more accurate tactical view. ⚙️⚡
🏆 For this work, we leveraged the championship-winning keypoint detection model from the SoccerNet Calibration Challenge:
📈 Implementing and evaluating this state‑of‑the‑art solution has deepened our appreciation for keypoint‑driven approaches in sports analytics. 📹📌
🔗 https://lnkd.in/em94QDFE
📡 By: https://yangx.top/DataScienceN
#ObjectDetection hashtag#DeepLearning hashtag#Detectron2 hashtag#ComputerVision hashtag#AI
hashtag#Football hashtag#SportsTech hashtag#MachineLearning hashtag#ComputerVision hashtag#AIinSports
hashtag#FutureOfFootball hashtag#SportsAnalytics
hashtag#TechInnovation hashtag#SportsAI hashtag#AIinFootball hashtag#AI hashtag#AIandSports hashtag#AIandSports
hashtag#FootballAnalytics hashtag#python hashtag#ai hashtag#yolo hashtag
lnkd.in
LinkedIn
This link will take you to a page that’s not on LinkedIn
👍4❤1🔥1
python_basics.pdf
212.3 KB
🚀 Master Python with Ease!
I've just compiled a set of clean and powerful Python Cheat Sheets to help beginners and intermediates speed up their coding workflow.
Whether you're brushing up on the basics or diving into data science, these sheets will save you time and boost your productivity.
📌 Topics Covered:
Python Basics
Jupyter Notebook Tips
Importing Libraries
NumPy Essentials
Pandas Overview
Perfect for students, developers, and anyone looking to keep essential Python knowledge at their fingertips.
#Python #CheatSheets #PythonTips #DataScience #JupyterNotebook #NumPy #Pandas #MachineLearning #AI #CodingTips #PythonForBeginners
🌟 Join the communities:
I've just compiled a set of clean and powerful Python Cheat Sheets to help beginners and intermediates speed up their coding workflow.
Whether you're brushing up on the basics or diving into data science, these sheets will save you time and boost your productivity.
📌 Topics Covered:
Python Basics
Jupyter Notebook Tips
Importing Libraries
NumPy Essentials
Pandas Overview
Perfect for students, developers, and anyone looking to keep essential Python knowledge at their fingertips.
#Python #CheatSheets #PythonTips #DataScience #JupyterNotebook #NumPy #Pandas #MachineLearning #AI #CodingTips #PythonForBeginners
🌟 Join the communities:
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk
📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❤3👌1
Forwarded from Python | Machine Learning | Coding | R
🚀 FREE IT Study Kits for 2025 — Grab Yours Now!
Just found these zero-cost resources from SPOTO👇
Perfect if you're prepping for #Cisco, #AWS, #PMP, #AI, #Python, #Excel, or #Cybersecurity!
✅ 100% Free
✅ No signup traps
✅ Instantly downloadable
📘 IT Certs E-book: https://bit.ly/4fJSoLP
☁️ Cloud & AI Kits: https://bit.ly/3F3lc5B
📊 Cybersecurity, Python & Excel: https://bit.ly/4mFrA4g
🧠 Skill Test (Free!): https://bit.ly/3PoKH39
Tag a friend & level up together 💪
🌐 Join the IT Study Group: https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
📲 1-on-1 Exam Help: https://wa.link/k0vy3x
👑Last 24 HOURS to grab Mid-Year Mega Sale prices!Don’t miss Lucky Draw👇
https://bit.ly/43VgcbT
Just found these zero-cost resources from SPOTO👇
Perfect if you're prepping for #Cisco, #AWS, #PMP, #AI, #Python, #Excel, or #Cybersecurity!
✅ 100% Free
✅ No signup traps
✅ Instantly downloadable
📘 IT Certs E-book: https://bit.ly/4fJSoLP
☁️ Cloud & AI Kits: https://bit.ly/3F3lc5B
📊 Cybersecurity, Python & Excel: https://bit.ly/4mFrA4g
🧠 Skill Test (Free!): https://bit.ly/3PoKH39
Tag a friend & level up together 💪
🌐 Join the IT Study Group: https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
📲 1-on-1 Exam Help: https://wa.link/k0vy3x
👑Last 24 HOURS to grab Mid-Year Mega Sale prices!Don’t miss Lucky Draw👇
https://bit.ly/43VgcbT
Forwarded from Python | Machine Learning | Coding | R
New to Pandas?
Here's a cheat sheet you can download (2025)
Here's a cheat sheet you can download (2025)
#Pandas #Python #DataAnalysis #PandasCheatSheet #PythonForDataScience #LearnPandas #DataScienceTools #PythonLibraries #FreeResources #DataManipulation
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
Forwarded from Python | Machine Learning | Coding | R
10 GitHub repos to build a career in AI engineering:
(100% free step-by-step roadmap)
1️⃣ ML for Beginners by Microsoft
A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.
Includes quizzes, lessons, and hands-on projects, with some videos.
GitHub repo → https://lnkd.in/dCxStbYv
2️⃣ AI for Beginners by Microsoft
This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.
Beginner-friendly, project-based, and full of real-world apps.
GitHub repo → https://lnkd.in/dwS5Jk9E
3️⃣ Neural Networks: Zero to Hero
Now that you’ve grasped the foundations of AI/ML, it’s time to dive deeper.
This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.
GitHub repo → https://lnkd.in/dXAQWucq
4️⃣ DL Paper Implementations
So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.
This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.
GitHub repo → https://lnkd.in/dTrtDrvs
5️⃣ Made With ML
Now it’s time to learn how to go from notebooks to production.
Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.
GitHub repo → https://lnkd.in/dYyjjBGb
6️⃣ Hands-on LLMs
- You've built neural nets.
- You've explored GPTs and LLMs.
Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.
GitHub repo → https://lnkd.in/dh2FwYFe
7️⃣ Advanced RAG Techniques
Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.
This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.
GitHub repo → https://lnkd.in/dBKxtX-D
8️⃣ AI Agents for Beginners by Microsoft
After diving into LLMs and mastering RAG, learn how to build AI agents.
This hands-on course covers building AI agents using frameworks like AutoGen.
GitHub repo → https://lnkd.in/dbFeuznE
9️⃣ Agents Towards Production
The above course will teach what AI agents are. Next, learn how to ship them.
This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.
GitHub repo → https://lnkd.in/dcwmamSb
🔟 AI Engg. Hub
To truly master LLMs, RAG, and AI agents, you need projects.
This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.
GitHub repo → https://lnkd.in/geMYm3b6
(100% free step-by-step roadmap)
A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.
Includes quizzes, lessons, and hands-on projects, with some videos.
GitHub repo → https://lnkd.in/dCxStbYv
This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.
Beginner-friendly, project-based, and full of real-world apps.
GitHub repo → https://lnkd.in/dwS5Jk9E
Now that you’ve grasped the foundations of AI/ML, it’s time to dive deeper.
This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.
GitHub repo → https://lnkd.in/dXAQWucq
So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.
This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.
GitHub repo → https://lnkd.in/dTrtDrvs
Now it’s time to learn how to go from notebooks to production.
Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.
GitHub repo → https://lnkd.in/dYyjjBGb
- You've built neural nets.
- You've explored GPTs and LLMs.
Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.
GitHub repo → https://lnkd.in/dh2FwYFe
Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.
This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.
GitHub repo → https://lnkd.in/dBKxtX-D
After diving into LLMs and mastering RAG, learn how to build AI agents.
This hands-on course covers building AI agents using frameworks like AutoGen.
GitHub repo → https://lnkd.in/dbFeuznE
The above course will teach what AI agents are. Next, learn how to ship them.
This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.
GitHub repo → https://lnkd.in/dcwmamSb
To truly master LLMs, RAG, and AI agents, you need projects.
This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.
GitHub repo → https://lnkd.in/geMYm3b6
#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
Forwarded from Python | Machine Learning | Coding | R
NUMPY FOR DS.pdf
4.5 MB
Let's start at the top...
NumPy contains a broad array of functionality for fast numerical & mathematical operations in Python
The core data-structure within #NumPy is an ndArray (or n-dimensional array)
Behind the scenes - much of the NumPy functionality is written in the programming language C
NumPy functionality is used in other popular #Python packages including #Pandas, #Matplotlib, & #scikitlearn!
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk
NumPy contains a broad array of functionality for fast numerical & mathematical operations in Python
The core data-structure within #NumPy is an ndArray (or n-dimensional array)
Behind the scenes - much of the NumPy functionality is written in the programming language C
NumPy functionality is used in other popular #Python packages including #Pandas, #Matplotlib, & #scikitlearn!
Please open Telegram to view this post
VIEW IN TELEGRAM
Topic: Python Script to Convert a Shared ChatGPT Link to PDF – Step-by-Step Guide
---
### Objective
In this lesson, we’ll build a Python script that:
• Takes a ChatGPT share link (e.g.,
• Downloads the HTML content of the chat
• Converts it to a PDF file using
This is useful for archiving, sharing, or printing ChatGPT conversations in a clean format.
---
### 1. Prerequisites
Before starting, you need the following libraries and tools:
#### • Install
#### • Install
Download from:
[https://wkhtmltopdf.org/downloads.html](https://wkhtmltopdf.org/downloads.html)
Make sure to add the path of the installed binary to your system PATH.
---
### 2. Python Script: Convert Shared ChatGPT URL to PDF
---
### 3. Notes
• This approach works only if the shared page is publicly accessible (which ChatGPT share links are).
• The PDF output will contain the web page version, including theme and layout.
• You can customize the PDF output using
---
### 4. Optional Enhancements
• Add GUI with Tkinter
• Accept multiple URLs
• Add PDF metadata (title, author, etc.)
• Add support for offline rendering using
---
### Exercise
• Try converting multiple ChatGPT share links to PDF
• Customize the styling with your own CSS
• Add a timestamp or watermark to the PDF
---
#Python #ChatGPT #PDF #WebScraping #Automation #pdfkit #tkinter
https://yangx.top/CodeProgrammer✅
---
### Objective
In this lesson, we’ll build a Python script that:
• Takes a ChatGPT share link (e.g.,
https://chat.openai.com/share/abc123
)• Downloads the HTML content of the chat
• Converts it to a PDF file using
pdfkit
and wkhtmltopdf
This is useful for archiving, sharing, or printing ChatGPT conversations in a clean format.
---
### 1. Prerequisites
Before starting, you need the following libraries and tools:
#### • Install
pdfkit
and requests
pip install pdfkit requests
#### • Install
wkhtmltopdf
Download from:
[https://wkhtmltopdf.org/downloads.html](https://wkhtmltopdf.org/downloads.html)
Make sure to add the path of the installed binary to your system PATH.
---
### 2. Python Script: Convert Shared ChatGPT URL to PDF
import pdfkit
import requests
import os
# Define output filename
output_file = "chatgpt_conversation.pdf"
# ChatGPT shared URL (user input)
chat_url = input("Enter the ChatGPT share URL: ").strip()
# Verify the URL format
if not chat_url.startswith("https://chat.openai.com/share/"):
print("Invalid URL. Must start with https://chat.openai.com/share/")
exit()
try:
# Download HTML content
response = requests.get(chat_url)
if response.status_code != 200:
raise Exception(f"Failed to load the chat: {response.status_code}")
html_content = response.text
# Save HTML to temporary file
with open("temp_chat.html", "w", encoding="utf-8") as f:
f.write(html_content)
# Convert HTML to PDF
pdfkit.from_file("temp_chat.html", output_file)
print(f"\n✅ PDF saved as: {output_file}")
# Optional: remove temp file
os.remove("temp_chat.html")
except Exception as e:
print(f"❌ Error: {e}")
---
### 3. Notes
• This approach works only if the shared page is publicly accessible (which ChatGPT share links are).
• The PDF output will contain the web page version, including theme and layout.
• You can customize the PDF output using
pdfkit
options (like page size, margins, etc.).---
### 4. Optional Enhancements
• Add GUI with Tkinter
• Accept multiple URLs
• Add PDF metadata (title, author, etc.)
• Add support for offline rendering using
BeautifulSoup
to clean content---
### Exercise
• Try converting multiple ChatGPT share links to PDF
• Customize the styling with your own CSS
• Add a timestamp or watermark to the PDF
---
#Python #ChatGPT #PDF #WebScraping #Automation #pdfkit #tkinter
https://yangx.top/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7
📚 JaidedAI/EasyOCR — an open-source Python library for Optical Character Recognition (OCR) that's easy to use and supports over 80 languages out of the box.
### 🔍 Key Features:
🔸 Extracts text from images and scanned documents — including handwritten notes and unusual fonts
🔸 Supports a wide range of languages like English, Russian, Chinese, Arabic, and more
🔸 Built on PyTorch — uses modern deep learning models (not the old-school Tesseract)
🔸 Simple to integrate into your Python projects
### ✅ Example Usage:
### 📌 Ideal For:
✅ Text extraction from photos, scans, and documents
✅ Embedding OCR capabilities in apps (e.g. automated data entry)
🔗 GitHub: https://github.com/JaidedAI/EasyOCR
👉 Follow us for more: @DataScienceN
#Python #OCR #MachineLearning #ComputerVision #EasyOCR
### 🔍 Key Features:
🔸 Extracts text from images and scanned documents — including handwritten notes and unusual fonts
🔸 Supports a wide range of languages like English, Russian, Chinese, Arabic, and more
🔸 Built on PyTorch — uses modern deep learning models (not the old-school Tesseract)
🔸 Simple to integrate into your Python projects
### ✅ Example Usage:
import easyocr
reader = easyocr.Reader(['en', 'ru']) # Choose supported languages
result = reader.readtext('image.png')
### 📌 Ideal For:
✅ Text extraction from photos, scans, and documents
✅ Embedding OCR capabilities in apps (e.g. automated data entry)
🔗 GitHub: https://github.com/JaidedAI/EasyOCR
👉 Follow us for more: @DataScienceN
#Python #OCR #MachineLearning #ComputerVision #EasyOCR
❤2🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
— Uses Segment Anything (SAM) by Meta for object segmentation
— Leverages Inpaint-Anything for realistic background generation
— Works in your browser with an intuitive Gradio UI
#AI #ImageEditing #ComputerVision #Gradio #OpenSource #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2🔥1
python-docx: Create and Modify Word Documents #python
python-docx is a Python library for reading, creating, and updating Microsoft Word 2007+ (.docx) files.
Installation
Example
https://yangx.top/DataScienceN🚗
python-docx is a Python library for reading, creating, and updating Microsoft Word 2007+ (.docx) files.
Installation
pip install python-docx
Example
from docx import Document
document = Document()
document.add_paragraph("It was a dark and stormy night.")
<docx.text.paragraph.Paragraph object at 0x10f19e760>
document.save("dark-and-stormy.docx")
document = Document("dark-and-stormy.docx")
document.paragraphs[0].text
'It was a dark and stormy night.'
https://yangx.top/DataScienceN
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2