Data Science Machine Learning Data Analysis
37.1K subscribers
1.13K photos
27 videos
39 files
1.24K links
This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning

Cross promotion and ads: @hussein_sheikho
加入频道
Topic: Handling Datasets of All Types – Part 4 of 5: Text Data Processing and Natural Language Processing (NLP)

---

1. Understanding Text Data

• Text data is unstructured and requires preprocessing to convert into numeric form for ML models.

• Common tasks: classification, sentiment analysis, language modeling.

---

2. Text Preprocessing Steps

Tokenization: Splitting text into words or subwords.

Lowercasing: Convert all text to lowercase for uniformity.

Removing Punctuation and Stopwords: Clean unnecessary words.

Stemming and Lemmatization: Reduce words to their root form.

---

3. Encoding Text Data

Bag-of-Words (BoW): Represents text as word count vectors.

TF-IDF (Term Frequency-Inverse Document Frequency): Weighs words based on importance.

Word Embeddings: Dense vector representations capturing semantic meaning (e.g., Word2Vec, GloVe).

---

4. Loading and Processing Text Data in Python

from sklearn.feature_extraction.text import TfidfVectorizer

texts = ["I love data science.", "Data science is fun."]
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(texts)


---

5. Handling Large Text Datasets

• Use libraries like NLTK, spaCy, and Transformers.

• For deep learning, tokenize using models like BERT or GPT.

---

6. Summary

• Text data needs extensive preprocessing and encoding.

• Choosing the right representation is crucial for model success.

---

Exercise

• Clean a set of sentences by tokenizing and removing stopwords.

• Convert cleaned text into TF-IDF vectors.

---

#NLP #TextProcessing #DataScience #MachineLearning #Python

https://yangx.top/DataScienceM
3👍1