Topic: Handling Datasets of All Types – Part 4 of 5: Text Data Processing and Natural Language Processing (NLP)
---
1. Understanding Text Data
• Text data is unstructured and requires preprocessing to convert into numeric form for ML models.
• Common tasks: classification, sentiment analysis, language modeling.
---
2. Text Preprocessing Steps
• Tokenization: Splitting text into words or subwords.
• Lowercasing: Convert all text to lowercase for uniformity.
• Removing Punctuation and Stopwords: Clean unnecessary words.
• Stemming and Lemmatization: Reduce words to their root form.
---
3. Encoding Text Data
• Bag-of-Words (BoW): Represents text as word count vectors.
• TF-IDF (Term Frequency-Inverse Document Frequency): Weighs words based on importance.
• Word Embeddings: Dense vector representations capturing semantic meaning (e.g., Word2Vec, GloVe).
---
4. Loading and Processing Text Data in Python
---
5. Handling Large Text Datasets
• Use libraries like NLTK, spaCy, and Transformers.
• For deep learning, tokenize using models like BERT or GPT.
---
6. Summary
• Text data needs extensive preprocessing and encoding.
• Choosing the right representation is crucial for model success.
---
Exercise
• Clean a set of sentences by tokenizing and removing stopwords.
• Convert cleaned text into TF-IDF vectors.
---
#NLP #TextProcessing #DataScience #MachineLearning #Python
https://yangx.top/DataScienceM
---
1. Understanding Text Data
• Text data is unstructured and requires preprocessing to convert into numeric form for ML models.
• Common tasks: classification, sentiment analysis, language modeling.
---
2. Text Preprocessing Steps
• Tokenization: Splitting text into words or subwords.
• Lowercasing: Convert all text to lowercase for uniformity.
• Removing Punctuation and Stopwords: Clean unnecessary words.
• Stemming and Lemmatization: Reduce words to their root form.
---
3. Encoding Text Data
• Bag-of-Words (BoW): Represents text as word count vectors.
• TF-IDF (Term Frequency-Inverse Document Frequency): Weighs words based on importance.
• Word Embeddings: Dense vector representations capturing semantic meaning (e.g., Word2Vec, GloVe).
---
4. Loading and Processing Text Data in Python
from sklearn.feature_extraction.text import TfidfVectorizer
texts = ["I love data science.", "Data science is fun."]
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(texts)
---
5. Handling Large Text Datasets
• Use libraries like NLTK, spaCy, and Transformers.
• For deep learning, tokenize using models like BERT or GPT.
---
6. Summary
• Text data needs extensive preprocessing and encoding.
• Choosing the right representation is crucial for model success.
---
Exercise
• Clean a set of sentences by tokenizing and removing stopwords.
• Convert cleaned text into TF-IDF vectors.
---
#NLP #TextProcessing #DataScience #MachineLearning #Python
https://yangx.top/DataScienceM
❤3👍1
PyTorch Masterclass: Part 3 – Deep Learning for Natural Language Processing with PyTorch
Duration: ~120 minutes
Link A: https://hackmd.io/@husseinsheikho/pytorch-3a
Link B: https://hackmd.io/@husseinsheikho/pytorch-3b
https://yangx.top/DataScienceM⚠️
Duration: ~120 minutes
Link A: https://hackmd.io/@husseinsheikho/pytorch-3a
Link B: https://hackmd.io/@husseinsheikho/pytorch-3b
#PyTorch #NLP #RNN #LSTM #GRU #Transformers #Attention #NaturalLanguageProcessing #TextClassification #SentimentAnalysis #WordEmbeddings #DeepLearning #MachineLearning #AI #SequenceModeling #BERT #GPT #TextProcessing #PyTorchNLP
https://yangx.top/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2