A Unified Theory of Early Visual Representations from Retina to Cortex through Anatomically Constrained Deep CNNs
Paper by Lindsey et al.: https://arxiv.org/abs/1901.00945
#Neurons #Cognition #MachineLearning #EvolutionaryComputing
Paper by Lindsey et al.: https://arxiv.org/abs/1901.00945
#Neurons #Cognition #MachineLearning #EvolutionaryComputing
Evolved Art with Transparent, Overlapping, and Geometric Shapes
Berg et al.: https://arxiv.org/abs/1904.06110
#NeuralComputing #EvolutionaryComputing #ArtificialIntelligence
Berg et al.: https://arxiv.org/abs/1904.06110
#NeuralComputing #EvolutionaryComputing #ArtificialIntelligence
Wave Physics as an Analog Recurrent Neural Network
Hughes et al.: https://arxiv.org/abs/1904.12831
#ComputationalPhysics #DeepLearning #MachineLearning #EvolutionaryComputing #Physics
Hughes et al.: https://arxiv.org/abs/1904.12831
#ComputationalPhysics #DeepLearning #MachineLearning #EvolutionaryComputing #Physics
arXiv.org
Wave Physics as an Analog Recurrent Neural Network
Analog machine learning hardware platforms promise to be faster and more energy-efficient than their digital counterparts. Wave physics, as found in acoustics and optics, is a natural candidate...
A Survey on Neural Architecture Search
Wistuba et al.: https://arxiv.org/abs/1905.01392
#MachineLearning #ComputerVision #EvolutionaryComputing
Wistuba et al.: https://arxiv.org/abs/1905.01392
#MachineLearning #ComputerVision #EvolutionaryComputing
Adaptive Neural Trees
Tanno et al.: https://arxiv.org/abs/1807.06699
#ArtificialIntelligence #ComputerVision #EvolutionaryComputing #MachineLearning #PatternRecognition
Tanno et al.: https://arxiv.org/abs/1807.06699
#ArtificialIntelligence #ComputerVision #EvolutionaryComputing #MachineLearning #PatternRecognition
arXiv.org
Adaptive Neural Trees
Deep neural networks and decision trees operate on largely separate paradigms; typically, the former performs representation learning with pre-specified architectures, while the latter is...
"Cellular automata as convolutional neural networks"
By William Gilpin: https://arxiv.org/abs/1809.02942
#CellularAutomata #NeuralNetworks #NeuralComputing #EvolutionaryComputing #ComputationalPhysics
By William Gilpin: https://arxiv.org/abs/1809.02942
#CellularAutomata #NeuralNetworks #NeuralComputing #EvolutionaryComputing #ComputationalPhysics
arXiv.org
Cellular automata as convolutional neural networks
Deep learning techniques have recently demonstrated broad success in predicting complex dynamical systems ranging from turbulence to human speech, motivating broader questions about how neural...
Playing Atari with Six Neurons
Cuccu et al.: https://arxiv.org/abs/1806.01363
#MachineLearning #ArtificialIntelligence #EvolutionaryComputing
Cuccu et al.: https://arxiv.org/abs/1806.01363
#MachineLearning #ArtificialIntelligence #EvolutionaryComputing
arXiv.org
Playing Atari with Six Neurons
Deep reinforcement learning, applied to vision-based problems like Atari games, maps pixels directly to actions; internally, the deep neural network bears the responsibility of both extracting...
A Survey on Neural Architecture Search
Wistuba et al.: https://arxiv.org/abs/1905.01392
#MachineLearning #ComputerVision #EvolutionaryComputing
Wistuba et al.: https://arxiv.org/abs/1905.01392
#MachineLearning #ComputerVision #EvolutionaryComputing
Cellular automata as convolutional neural networks"
By William Gilpin: https://arxiv.org/abs/1809.02942
#CellularAutomata #NeuralNetworks #NeuralComputing #EvolutionaryComputing #ComputationalPhysics
By William Gilpin: https://arxiv.org/abs/1809.02942
#CellularAutomata #NeuralNetworks #NeuralComputing #EvolutionaryComputing #ComputationalPhysics
arXiv.org
Cellular automata as convolutional neural networks
Deep learning techniques have recently demonstrated broad success in predicting complex dynamical systems ranging from turbulence to human speech, motivating broader questions about how neural...
Adaptive Neural Trees
Tanno et al.: https://arxiv.org/abs/1807.06699
#ArtificialIntelligence #ComputerVision #EvolutionaryComputing #MachineLearning #PatternRecognition
Tanno et al.: https://arxiv.org/abs/1807.06699
#ArtificialIntelligence #ComputerVision #EvolutionaryComputing #MachineLearning #PatternRecognition
arXiv.org
Adaptive Neural Trees
Deep neural networks and decision trees operate on largely separate paradigms; typically, the former performs representation learning with pre-specified architectures, while the latter is...
Adaptive Neural Trees
Tanno et al.: https://arxiv.org/abs/1807.06699
#ArtificialIntelligence #ComputerVision #EvolutionaryComputing #MachineLearning #PatternRecognition
Tanno et al.: https://arxiv.org/abs/1807.06699
#ArtificialIntelligence #ComputerVision #EvolutionaryComputing #MachineLearning #PatternRecognition
arXiv.org
Adaptive Neural Trees
Deep neural networks and decision trees operate on largely separate paradigms; typically, the former performs representation learning with pre-specified architectures, while the latter is...
Sparse Networks from Scratch: Faster Training without Losing Performance
Tim Dettmers and Luke Zettlemoyer: https://arxiv.org/abs/1907.04840
Paper: https://arxiv.org/abs/1907.04840
Blog post: https://timdettmers.com/2019/07/11/sparse-networks-from-scratch/
Code: https://github.com/TimDettmers/sparse_learning
#MachineLearning #NeuralComputing #EvolutionaryComputing
Tim Dettmers and Luke Zettlemoyer: https://arxiv.org/abs/1907.04840
Paper: https://arxiv.org/abs/1907.04840
Blog post: https://timdettmers.com/2019/07/11/sparse-networks-from-scratch/
Code: https://github.com/TimDettmers/sparse_learning
#MachineLearning #NeuralComputing #EvolutionaryComputing
arXiv.org
Sparse Networks from Scratch: Faster Training without Losing Performance
We demonstrate the possibility of what we call sparse learning: accelerated training of deep neural networks that maintain sparse weights throughout training while achieving dense performance...
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang and Hadi Salman : https://arxiv.org/abs/1907.10599
Compute eigenvalues : https://github.com/thegregyang/NNspectra
#MachineLearning #NeuralComputing #EvolutionaryComputing
Greg Yang and Hadi Salman : https://arxiv.org/abs/1907.10599
Compute eigenvalues : https://github.com/thegregyang/NNspectra
#MachineLearning #NeuralComputing #EvolutionaryComputing
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn, Pieter Abbeel, Sergey Levine : https://arxiv.org/abs/1703.03400
#MachineLearning #ArtificialIntelligence #EvolutionaryComputing
Chelsea Finn, Pieter Abbeel, Sergey Levine : https://arxiv.org/abs/1703.03400
#MachineLearning #ArtificialIntelligence #EvolutionaryComputing
arXiv.org
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning...
Neuroevolution of Self-Interpretable Agents
Tang et al.: https://arxiv.org/abs/2003.08165
#NeuralComputing #EvolutionaryComputing #MachineLearning
Tang et al.: https://arxiv.org/abs/2003.08165
#NeuralComputing #EvolutionaryComputing #MachineLearning