Zen of Python
20.1K subscribers
1.17K photos
159 videos
32 files
3.09K links
Полный Дзен Пайтона в одном канале

Разместить рекламу: @tproger_sales_bot

Правила общения: https://tprg.ru/rules

Другие каналы: @tproger_channels

Сайт: https://tprg.ru/site

Регистрация в перечне РКН: https://tprg.ru/xZOL
加入频道
Media is too big
VIEW IN TELEGRAM
«Я 10 лет писал на Python, и вот что я думаю»

Лёша Корепанов поделился своим мнением о разработке на Python, опираясь на свой 10-летний опыт. Получилось интересно и ёмко.

Согласны с ним?

#видео
Telegram Mini App. Как создать Web App с нуля

Mini Apps (или же Web Apps) — это относительно новый и удобный способ добавления веб приложения прямо в интерфейсе Telegram. Сегодня, когда в мессенджере появился свой магазин приложений, это стало особоенно актуально.

Особенность Mini Apps заключается в том, что они поддерживают авторизацию, платежи одной кнопкой и возможность работать с данными пользователя, открывшего мини-приложение.

В этом гайде вы научитесь создавать приложения, которые могут взаимодействовать с данными пользователя и разворачивать бота вместе с сайтом в облаке:

https://habr.com/ru/companies/amvera/articles/838180/

#бот #telegram #web
Простыми словами: Бинарное дерево поиска

Бинарное дерево поиска (Binary Search Tree, или просто BST) — это структура данных, которая помогает легко и быстро находить, добавлять и удалять элементы. Давайте разберёмся, что это такое и как с ним работать, на простых примерах.

Представьте себе дерево. У каждого узла в этом дереве есть:
— значение (например, число);
— ссылка на левую «веточку» (левого ребенка);
— ссылка на правую «веточку» (правого ребенка).

Правило у этого дерева такое:
— все значения в левом поддереве меньше, чем значение в узле;
— все значения в правом поддереве больше, чем значение в узле.

Простейшие операции с BST

Вставка элемента

Если вы хотите добавить элемент в дерево, вы начинаете с самого верха. Сравниваете новое значение с корнем:
— если оно меньше, переходите влево;
— если больше, переходите вправо;
— повторяете, пока не найдете пустую коробочку (место), и вы поместите туда новое значение.

class Node:
def __init__(self, key):
self.key = key
self.left = None
self.right = None

def insert(root, key):
if root is None:
return Node(key)
if key < root.key:
root.left = insert(root.left, key)
else:
root.right = insert(root.right, key)
return root


Поиск элемента

Когда вы хотите найти элемент, вы снова начинаете с корня и сравниваете:
— если нашли — отлично, элемент найден!
— если меньше, идете налево.
— если больше, идете направо.
Повторяете, пока не найдете элемент или не убедитесь, что его нет в дереве.

def search(root, key):
if root is None or root.key == key:
return root
if key < root.key:
return search(root.left, key)
return search(root.right, key)


Удаление элемента

Удаление элемента немного сложнее, потому что есть три варианта:
— элемент — это лист (нет детей). Просто удаляем его;
— элемент имеет одного ребенка. Тогда просто заменяем его этим ребенком;
— элемент имеет двух детей. В этом случае мы находим минимальный элемент в правом поддереве и заменяем удаляемый элемент на него.

def deleteNode(root, key):
if root is None:
return root
if key < root.key:
root.left = deleteNode(root.left, key)
elif key > root.key:
root.right = deleteNode(root.right, key)
else:
if root.left is None:
return root.right
elif root.right is None:
return root.left
temp = minValueNode(root.right)
root.key = temp.key
root.right = deleteNode(root.right, temp.key)
return root

def minValueNode(node):
current = node
while current.left is not None:
current = current.left
return current


Обход дерева

Обход означает посещение всех узлов в дереве. Существует несколько способов делать это:

1. In-order (Левый-Корень-Правый): посещаем сначала левое поддерево, потом текущий узел, потом правое поддерево.
2. Pre-order (Корень-Левый-Правый): посещаем сначала текущий узел, потом левое поддерево, потом правое поддерево.
3. Post-order (Левый-Правый-Корень): посещаем сначала левое поддерево, потом правое поддерево, потом текущий узел.

Пример in-order обхода:
def inorder(root):
if root:
inorder(root.left)
print(root.key, end=' ')
inorder(root.right)


Давайте резюмируем. Бинарное дерево поиска — это отличный инструмент для быстрого и эффективного управления данными. С его помощью легко найти, добавить или удалить элемент, благодаря чёткой структуре и правилам. Теперь, когда вы знаете, что оно из себя представляет, сможете без труда использовать его в своих проектах

#простымисловами #bst
встречайте — Bython!

Это проект, который заменяет все отступы в Python на фигурные скобки. Больше не нужно о них париться — если накосячите с табами и пробелами или перенесете кусок кода с другим стилем отступов, то ничего не сломается.

Если вам по каким-то причинам это надо, то ищите проект здесь.

@your_tech
This media is not supported in your browser
VIEW IN TELEGRAM
Как упростить работу с числами в Python

Небольшой совет, как сделать числа более читаемыми.

#видео
Давайте проверим ваши знания работы бинарного дерева поиска. Посмотрите на изображение и ответьте на вопрос ниже.

#викторина #bst
Головоломка «Сапёр» на Python в 66 строк и её решение вероятностным алгоритмом

Автор статьи поставил себе задачу написать менее чем за 100 строк полноценную игру «сапёр». У него получилось уложиться в 66 строк, сделав игру, которая работает в консоли.

Посмотреть на реализацию можно в статье: https://habr.com/ru/articles/833494/

#gamedev

Смогли бы написать ещё короче?
This media is not supported in your browser
VIEW IN TELEGRAM
Простой Python-скрипт + ИИ = оптимизация ваших рабочих процессов

Формула простая, как и этот туториал, после которого вы сможете использовать голосовой ввод с автоматической транскрибацией речи в текст в любом поле ввода на вашем компьютере. Важной особенностью скрипта будет его работа в фоне и автоматический вызов голосом по необходимости.

«Галя, у нас отмена» — и можно начинать курсач с чистого листа. Попробуете?

#гайд #ии #интересное
Как оптимизации в CPython повлияли на скорость работы Python

Автор твита на картинке заметил странное поведение Python. Когда он вызывал встроенную функцию min, производительность кода была ниже, чем если реализованный метод в самом коде.

Да, его код был написан ещё на Python 2. Сейчас ситуация стала гораздо лучше. Но почему? Автор этой статьи провёл несколько бенчмарков и поделился выводами:

https://habr.com/ru/companies/beget/articles/839348/
Forwarded from Метод утёнка
This media is not supported in your browser
VIEW IN TELEGRAM
Toolfolio — все нужные инструменты для ИИ и не только в одном месте

Берите на заметку и не теряйте этот сервис. Здесь собраны полезные нейронки под любую задачу, куча бесплатных аналогов популярных программ, а также целые библиотеки плагинов для ваших любимых сервисов.

#инструменты
Forwarded from Метод утёнка
Берите на заметку — лучший алгоритм для устранения багов

#кек
Простыми словами: B-дерево

В прошлом посте я рассказывал про бинарное дерево поиска. Теперь давайте разберём ещё одну популярную структуру данных.

B-дерево (B-tree) — это самобалансирующаяся структура данных, которая хранит данные в отсортированном виде, позволяя эффективно выполнять операции поиска, вставки и удаления. B-деревья часто используются в системах хранения данных, таких как базы данных и файловые системы, благодаря своей способности справляться с большими объемами данных и минимизировать количество операций чтения/записи на диске.

Структура B-дерева выглядит следующим образом:

1. Корень дерева: он содержит указатели на свои дочерние узлы.
2. Внутренние узлы: эти узлы содержат ключи и указатели на другие узлы дерева.
3. Листовые узлы: узлы на самом нижнем уровне дерева, которые содержат сами данные или указывают на них.

//пример бинарного дерева

[10, 20]
/ | \
[1, 2, 5] [15, 18] [25, 30, 35]


Каждый узел в B-дереве может содержать множество ключей и дочерних указателей, что позволяет дереву быть плоским и широким, а не высоким и узким.

Как я уже сказал, B-tree похожа на BST, но имеет ряд ключевых отличий:

Количество ключей в узле:
BST: Каждый узел содержит только один ключ и два дочерних узла (левого и правого).
B-tree: Каждый узел может содержать несколько ключей и производить разветвление на большее количество дочерних узлов (определяется порядком дерева).

Балансировка:
BST: Может стать несбалансированным, что приводит к увеличению высоты дерева и замедляет операции поиска.
B-tree: Остается сбалансированным благодаря встроенному механизму балансировки при вставке и удалении элементов.

Высота дерева:
BST: Может быть оправдано большой, так как каждый узел содержит только один ключ.
B-tree: Значительно меньше и площе, благодаря множеству ключей в одном узле.

Производительность при работе с большими данными:
BST: Из-за потенциально большой высоты дерева может потребоваться множество операций для поиска элемента.
B-tree: Более плоская структура минимизирует количество операций ввода-вывода, что особенно полезно при работе с внешней памятью и большими объемами данных.

В связи с этим можно выделить следующие преимущества B-дерева:
1. Более оптимизированное хранение больших объемов данных.
2. Автоматическая балансировка.
3. Эффективный доступ к данным благодаря низкой высоте дерева и множеству ключей в узлах.

Но где же применяется такая структура данных? Вот несколько примеров:

1. Базы данных. B-деревья широко используются в реляционных базах данных (MySQL, PostgreSQL) для реализации индексов, что позволяет эффективно выполнять операции поиска, вставки и удаления данных.
2. Файловые системы. Файловые системы, такие как NTFS и ext4, используют B-деревья для организации и управления файлами на диске, обеспечивая быструю навигацию и доступ.
Кэширование данных : Используются для быстрого доступа к часто запрашиваемым данным, улучшая производительность приложений.

Теперь вы знаете о ещё одном способе хранения данных. Какой вам кажется более удобным?

#простымисловами #структураданных #btree
Гайд по обработке данных с помощью Pandas

Отличное руководство для новичков и тех, кто постоянно работает с Pandas. В статье досконально описаны стандартные методы фильтрации, объединения, приведения типов и другие операции, но даже для гуру найдётся пара новых приёмов. Вау-эффект гарантирован.

#гайд #pandas
Media is too big
VIEW IN TELEGRAM
Вы всё ещё логируете через f-string? Тогда мы идём к вам

В этом видео вы узнаете об основной особенности логирования в Python, связанной с рендером строк. Вы изучите основные особенности стандартной Python библиотеки logging и получите «best practices» промышленного логирования.

После такого f-string, конечно, останутся в вашем арсенале. Но вот захотите ли вы их использовать также часто, как раньше?

#видео #основы #bestpractices
Forwarded from Метод утёнка
Вышла Visual Studio Code 1.93

И это отличная новость, ведь теперь там есть поддержка профилей, если вам нужны разные конфигурации под различные задачи, а также улучшена поддержка Python. Наконец-то питонисты смогут по полной использовать этот редактор кода.

Подробнее о нововведениях в нашей статье.

#новости #vscode
256 попугаев дней с начала года прошли!

А это значит, что наступил День программиста! Мы с друзьями приготовили для вас небольшой сюрприз. Переходите по ссылке и трясите коробку, чтобы забрать его: https://tprg.ru/aKie

Делитесь в комментариях, что вам выпало.
Мини-гайд по отправке сообщений из Google Таблицы или базы данных с Python

Полезное руководство для тех, кто хочет разобраться в том, как настроить автоматическую отправку уведомлений, например, о готовности заказа. В статье разбирается вариант с таблицами Google, но вы также найдёте там информацию для привязки кода к CMS.
Click — удобный инструмент для создания CLI на Python

Если вам нужно создать интерфейс командной строки для вашего проекта, то этот пакет позволит сделать это максимально просто.

Инструмент бесплатный и с отличной документацией: https://click.palletsprojects.com/en/8.1.x/

#инструменты #библиотека #cli