Богатейшее частное государство мира создаст воплощенных AGI-агентов для любого типа реальности.
Цель суперкоманды Джима Фана - чувствующие и понимающие агенты физического и виртуальных миров.
По доходам сегодняшняя NVIDIA – 12е государство мира. И при этом, это крупнейшее «частное государство» на свете [1].
И поэтому объявление компании о формировании исследовательской супер-команды GEAR (Generalist Embodied Agent Research), возглавляемой Джимом Фаном и Юкэ Чжу, с миссией - создание универсальных воплощенных агентов в физическом (робототехника) и виртуальных (игры и любые симуляции) мирах, - это самое важное событие в области ИИ первых 2х месяцев 2024 [2].
«Мы верим в будущее, в котором каждая движущаяся машина будет автономной, а роботы и смоделированные виртуальные агенты будут такими же вездесущими, как iPhone… Мы отправляемся в миссию по высадке на Луну, и до того, как мы туда доберемся, мы получим горы знаний и сделаем много открытий» - пишет Фан.
Джим Фан имеет веские основания так говорить. Ибо он [3]:
• самый известный в мире практик в деле создания ИИ-агентов (Voyager - первый ИИ-агент, который умело играет в Minecraft, MineDojo - агент с открытым исходным кодом, обучающийся, просматривая 100 000 видеороликов Minecraft на YouTube, Eureka - робот-рука с пятью пальцами, выполняющий чрезвычайно тонкие и сложные задачи) и VIMA - одна из первых базовых мультимодальных моделей фундамент для манипулирования роботами)
• с совершенно уникальной карьерой (он работал в OpenAI с Ильей Суцкевером и Андреем Карпати, в Baidu AI Labs с Эндрю Нг и Дарио Амодеем и в MILA с Йошуа Бенджио)
Принципиальное отличие AGI-агентов, разрабатываемых GEAR, в следующем:
Они будут универсально-воплощенными – способными учиться и «жить» в обоих типах миров (физическом и виртуальном/цифровом).
Это будет достигаться путем синтеза 3х типов данных: из материального мира, из ноосферы (Интернета) и синтетических данных (порождаемых «ИИ-спецагентами, типа Eureka, уже разработанного Фаном для NVIDIA [5])
Год назад я писал «Поворотный момент пройден - AGI появится через 1,5 года. Сработает сочетание больших денег, открытых фреймворков и превращение LLM в когнитивных агентов» [6].
И создание NVIDIA GEAR – важнейший шаг в воплощении этого прогноза.
#ВоплощенныйИнтеллект #AGI #Роботы
0 https://www.youtube.com/watch?v=URHt3p6tbrY
1 https://bit.ly/49MYj0d
2 https://research.nvidia.com/labs/gear/
3 https://jimfan.me/
4 https://bit.ly/3uO4O42
5 https://www.toolify.ai/ai-news/eureka-nvidias-revolutionary-ai-breakthrough-towards-agi-1542610
6 https://yangx.top/theworldisnoteasy/1696
Цель суперкоманды Джима Фана - чувствующие и понимающие агенты физического и виртуальных миров.
По доходам сегодняшняя NVIDIA – 12е государство мира. И при этом, это крупнейшее «частное государство» на свете [1].
И поэтому объявление компании о формировании исследовательской супер-команды GEAR (Generalist Embodied Agent Research), возглавляемой Джимом Фаном и Юкэ Чжу, с миссией - создание универсальных воплощенных агентов в физическом (робототехника) и виртуальных (игры и любые симуляции) мирах, - это самое важное событие в области ИИ первых 2х месяцев 2024 [2].
«Мы верим в будущее, в котором каждая движущаяся машина будет автономной, а роботы и смоделированные виртуальные агенты будут такими же вездесущими, как iPhone… Мы отправляемся в миссию по высадке на Луну, и до того, как мы туда доберемся, мы получим горы знаний и сделаем много открытий» - пишет Фан.
Джим Фан имеет веские основания так говорить. Ибо он [3]:
• самый известный в мире практик в деле создания ИИ-агентов (Voyager - первый ИИ-агент, который умело играет в Minecraft, MineDojo - агент с открытым исходным кодом, обучающийся, просматривая 100 000 видеороликов Minecraft на YouTube, Eureka - робот-рука с пятью пальцами, выполняющий чрезвычайно тонкие и сложные задачи) и VIMA - одна из первых базовых мультимодальных моделей фундамент для манипулирования роботами)
• с совершенно уникальной карьерой (он работал в OpenAI с Ильей Суцкевером и Андреем Карпати, в Baidu AI Labs с Эндрю Нг и Дарио Амодеем и в MILA с Йошуа Бенджио)
Принципиальное отличие AGI-агентов, разрабатываемых GEAR, в следующем:
Они будут универсально-воплощенными – способными учиться и «жить» в обоих типах миров (физическом и виртуальном/цифровом).
Это будет достигаться путем синтеза 3х типов данных: из материального мира, из ноосферы (Интернета) и синтетических данных (порождаемых «ИИ-спецагентами, типа Eureka, уже разработанного Фаном для NVIDIA [5])
Год назад я писал «Поворотный момент пройден - AGI появится через 1,5 года. Сработает сочетание больших денег, открытых фреймворков и превращение LLM в когнитивных агентов» [6].
И создание NVIDIA GEAR – важнейший шаг в воплощении этого прогноза.
#ВоплощенныйИнтеллект #AGI #Роботы
0 https://www.youtube.com/watch?v=URHt3p6tbrY
1 https://bit.ly/49MYj0d
2 https://research.nvidia.com/labs/gear/
3 https://jimfan.me/
4 https://bit.ly/3uO4O42
5 https://www.toolify.ai/ai-news/eureka-nvidias-revolutionary-ai-breakthrough-towards-agi-1542610
6 https://yangx.top/theworldisnoteasy/1696
Истинно верный ответ на вопрос 2+2? можно дать лишь бросанием игральных костей.
Третье фундаментальное математико-философское откровение о том, как мы познаем физический мир.
Первые два фундаментальные откровения были просто крышесносными.
1. В 2018 Дэвид Волперт (полагаю, самый крутой физик 20-21 веков, работающий на стыке математического и философского осмысления мира и возможностей его познания) доказал существование предела знаний — т.е. всего и всегда никто и никогда узнать не сможет. Это доказательство не зависит от конкретных теорий физической реальности (квантовая механика, теория относительность и т.п.) и является для всех них универсальным (подробней см. мой пост «Математически доказано — Бог един, а знание не бесконечно» [1])
2. В 2022 Волперт доказал, что не только Бог не всеведущ, но и Сверхинтеллект, ибо (даже если его удастся когда-либо создать) у него также будет граница знаний, которую он, в принципе, не сможет преодолеть (подробней см. мой пост «Если даже Бог не всеведущ, — где границы знаний AGI» [2])
Третье откровение под стать двум первым. Это совместная работа Дэвида Волперта и Дэвида Кинни (философ и ученый-когнитивист) «Стохастическая модель математики и естественных наук» [3]. В ней авторы предлагают единую вероятностную структуру для описания математики, физической вселенной и описания того, как люди рассуждают о том и другом. Предложенный авторами фреймворк - стохастические математические системы (SMS), - описывает математику и естественные науки, как стохастические (вероятностные) системы, что позволяет ответить на такие вопросы:
• Чем отличается мышление математика от мышления ученого?
Математики имеют дело с абстрактными понятиями, а ученые изучают реальный мир. Это значит, что у них разные способы рассуждения и проверки своих идей.
• Как наше местоположение во Вселенной влияет на наши знания?
Мы всегда ограничены тем, что можем наблюдать и измерять. Можем ли мы быть уверены в своих знаниях, если не видим полной картины?
• Есть ли предел тому, что мы можем узнать?
Некоторые известные теоремы говорят о том, что в математике существуют вопросы, на которые невозможно дать однозначный ответ. Может ли это быть правдой и для науки?
• Как ученые могут лучше учиться на основе данных?
Существуют ограничения на то, насколько хорошо компьютерные программы могут обучаться без предварительных знаний. Можно ли разработать более эффективные методы обучения для ученых?
• Как ученые с разными взглядами могут прийти к согласию?
Даже если ученые не согласны во всем, у них могут быть общие цели, и крайне важно понять, как им найти общий язык и сотрудничать.
• Как избежать ложных умозаключений?
Иногда мы делаем поспешные выводы на основе неполной информации. Как научиться мыслить более логично и критически?
Также SMS предлагает решение проблемы логического всеведения в эпистемической логике, где предполагается, что если рассуждающий знает какое-либо предложение A и знает, что A влечет B, то он знает и B. SMS позволяет избежать этой проблемы, предлагая определение "знания", не требующее логического всеведения.
Если новая теория верна, то Эйнштейн ошибался, и Бог играет-таки в кости.
Картинка поста https://telegra.ph/file/57ef2e0ecc9e9d5dcadcc.jpg
1 https://yangx.top/theworldisnoteasy/473
2 https://yangx.top/theworldisnoteasy/1574
3 за пейволом https://link.springer.com/article/10.1007/s10701-024-00755-9
открытый доступ https://arxiv.org/pdf/2209.00543
#МатЛогика #Реальность #AGI
Третье фундаментальное математико-философское откровение о том, как мы познаем физический мир.
Первые два фундаментальные откровения были просто крышесносными.
1. В 2018 Дэвид Волперт (полагаю, самый крутой физик 20-21 веков, работающий на стыке математического и философского осмысления мира и возможностей его познания) доказал существование предела знаний — т.е. всего и всегда никто и никогда узнать не сможет. Это доказательство не зависит от конкретных теорий физической реальности (квантовая механика, теория относительность и т.п.) и является для всех них универсальным (подробней см. мой пост «Математически доказано — Бог един, а знание не бесконечно» [1])
2. В 2022 Волперт доказал, что не только Бог не всеведущ, но и Сверхинтеллект, ибо (даже если его удастся когда-либо создать) у него также будет граница знаний, которую он, в принципе, не сможет преодолеть (подробней см. мой пост «Если даже Бог не всеведущ, — где границы знаний AGI» [2])
Третье откровение под стать двум первым. Это совместная работа Дэвида Волперта и Дэвида Кинни (философ и ученый-когнитивист) «Стохастическая модель математики и естественных наук» [3]. В ней авторы предлагают единую вероятностную структуру для описания математики, физической вселенной и описания того, как люди рассуждают о том и другом. Предложенный авторами фреймворк - стохастические математические системы (SMS), - описывает математику и естественные науки, как стохастические (вероятностные) системы, что позволяет ответить на такие вопросы:
• Чем отличается мышление математика от мышления ученого?
Математики имеют дело с абстрактными понятиями, а ученые изучают реальный мир. Это значит, что у них разные способы рассуждения и проверки своих идей.
• Как наше местоположение во Вселенной влияет на наши знания?
Мы всегда ограничены тем, что можем наблюдать и измерять. Можем ли мы быть уверены в своих знаниях, если не видим полной картины?
• Есть ли предел тому, что мы можем узнать?
Некоторые известные теоремы говорят о том, что в математике существуют вопросы, на которые невозможно дать однозначный ответ. Может ли это быть правдой и для науки?
• Как ученые могут лучше учиться на основе данных?
Существуют ограничения на то, насколько хорошо компьютерные программы могут обучаться без предварительных знаний. Можно ли разработать более эффективные методы обучения для ученых?
• Как ученые с разными взглядами могут прийти к согласию?
Даже если ученые не согласны во всем, у них могут быть общие цели, и крайне важно понять, как им найти общий язык и сотрудничать.
• Как избежать ложных умозаключений?
Иногда мы делаем поспешные выводы на основе неполной информации. Как научиться мыслить более логично и критически?
Также SMS предлагает решение проблемы логического всеведения в эпистемической логике, где предполагается, что если рассуждающий знает какое-либо предложение A и знает, что A влечет B, то он знает и B. SMS позволяет избежать этой проблемы, предлагая определение "знания", не требующее логического всеведения.
Если новая теория верна, то Эйнштейн ошибался, и Бог играет-таки в кости.
Картинка поста https://telegra.ph/file/57ef2e0ecc9e9d5dcadcc.jpg
1 https://yangx.top/theworldisnoteasy/473
2 https://yangx.top/theworldisnoteasy/1574
3 за пейволом https://link.springer.com/article/10.1007/s10701-024-00755-9
открытый доступ https://arxiv.org/pdf/2209.00543
#МатЛогика #Реальность #AGI
Как думаете:
1) Что общего у Ильи Суцкевера и Джозефа Ротблатта?
2) Сколько приоритетных задач ставили перед разработчиками ядерного оружия до и после испытаний в пустыне Аламогордо?
3) Можно ли самому примерно оценить, превосходят ли нас LLM в глубине и ясности мышления?
Наверное, многим формулировка и сочетание вопросов покажутся странными. Но дело вот в чем.
В прошлом году под «Заявлением о рисках, связанных с ИИ» [1] поставили подписи сотни видных экспертов и общественных деятелей. Они писали, что снижение риска исчезновения человечества из-за ИИ должно стать глобальным приоритетом наряду с другими рисками социального масштаба, такими как пандемии и ядерная война.
Результат – как слону дробина. Все идет, как и шло. Только процесс ускоряется.
Позавчера на политическом форуме Science появилась статья «Управление экстремальными рисками ИИ на фоне быстрого прогресса» [2], среди авторов которой многие известные люди: Йошуа Бенджио, Джеффри Хинтон, Эндрю Яо и еще 22 человека.
Вангую – результат будет тот же. Караван пойдет дальше, не обращая внимания и на это обращение. Как будто всех их пишут экзальтированные недоучки, а не сами разработчики ИИ-систем.
Что же тогда может добавить к сказанному отцами нынешних ИИ-систем автор малоизвестного, хотя и интересного для ограниченной аудитории канала?
Думаю, кое-что все же могу.
Как говорил Гарри Трумэн, - If you can't convince them, confuse them ("Если не можешь их убедить, запутай их."). А запутывать можно, задавая такие вопросы, отвечая на которые ваши оппоненты будут вынуждены, либо соглашаться с вами, либо впасть в противоречие, видное им самим.
Следуя совету Трумэна, я и выбрал 3 вопроса, приведенные в начале этого текста.
И вот как я сам отвечаю на них.
1) То же, что у OpenAI и Манхэттенского проекта.
2) До испытаний – более 20, после – лишь одну.
3) Можно, самостоятельно пройдя «Тест Тесла».
Полагаю, что наиболее пытливые читатели захотят сначала сами поразмыслить, почему вопросы именно такие, и что за интрига стоит за каждым из них.
Ну а кто пожелает сразу перейти к моему разбору, - читайте его в не очень длинном лонгриде: «Так что же увидели Суцкевер и Лейке, сподвигнувшее их уйти. Попробуйте сами оценить, что прячут за закрытыми дверьми OpenAI, пройдя "Тест Тесла"»
Картинка поста: https://telegra.ph/file/9623799578bb9d3c21828.jpg
1 https://www.safe.ai/work/statement-on-ai-risk
2 https://www.science.org/doi/10.1126/science.adn0117
Лонгрид:
https://boosty.to/theworldisnoteasy/posts/8afdaedc-15f9-4c11-923c-5ffd21842809
https://www.patreon.com/posts/tak-chto-zhe-i-104788713
P.S. Читатели, ограниченные в средствах на подписку, могут написать мне, и я дам им персональный доступ к тексту лонгрида (очень надеюсь, что уж в этот-то раз, среди желающих прочесть лонгрид, подписчиков окажется больше 😊)
#AGI #ИИриски
1) Что общего у Ильи Суцкевера и Джозефа Ротблатта?
2) Сколько приоритетных задач ставили перед разработчиками ядерного оружия до и после испытаний в пустыне Аламогордо?
3) Можно ли самому примерно оценить, превосходят ли нас LLM в глубине и ясности мышления?
Наверное, многим формулировка и сочетание вопросов покажутся странными. Но дело вот в чем.
В прошлом году под «Заявлением о рисках, связанных с ИИ» [1] поставили подписи сотни видных экспертов и общественных деятелей. Они писали, что снижение риска исчезновения человечества из-за ИИ должно стать глобальным приоритетом наряду с другими рисками социального масштаба, такими как пандемии и ядерная война.
Результат – как слону дробина. Все идет, как и шло. Только процесс ускоряется.
Позавчера на политическом форуме Science появилась статья «Управление экстремальными рисками ИИ на фоне быстрого прогресса» [2], среди авторов которой многие известные люди: Йошуа Бенджио, Джеффри Хинтон, Эндрю Яо и еще 22 человека.
Вангую – результат будет тот же. Караван пойдет дальше, не обращая внимания и на это обращение. Как будто всех их пишут экзальтированные недоучки, а не сами разработчики ИИ-систем.
Что же тогда может добавить к сказанному отцами нынешних ИИ-систем автор малоизвестного, хотя и интересного для ограниченной аудитории канала?
Думаю, кое-что все же могу.
Как говорил Гарри Трумэн, - If you can't convince them, confuse them ("Если не можешь их убедить, запутай их."). А запутывать можно, задавая такие вопросы, отвечая на которые ваши оппоненты будут вынуждены, либо соглашаться с вами, либо впасть в противоречие, видное им самим.
Следуя совету Трумэна, я и выбрал 3 вопроса, приведенные в начале этого текста.
И вот как я сам отвечаю на них.
1) То же, что у OpenAI и Манхэттенского проекта.
2) До испытаний – более 20, после – лишь одну.
3) Можно, самостоятельно пройдя «Тест Тесла».
Полагаю, что наиболее пытливые читатели захотят сначала сами поразмыслить, почему вопросы именно такие, и что за интрига стоит за каждым из них.
Ну а кто пожелает сразу перейти к моему разбору, - читайте его в не очень длинном лонгриде: «Так что же увидели Суцкевер и Лейке, сподвигнувшее их уйти. Попробуйте сами оценить, что прячут за закрытыми дверьми OpenAI, пройдя "Тест Тесла"»
Картинка поста: https://telegra.ph/file/9623799578bb9d3c21828.jpg
1 https://www.safe.ai/work/statement-on-ai-risk
2 https://www.science.org/doi/10.1126/science.adn0117
Лонгрид:
https://boosty.to/theworldisnoteasy/posts/8afdaedc-15f9-4c11-923c-5ffd21842809
https://www.patreon.com/posts/tak-chto-zhe-i-104788713
P.S. Читатели, ограниченные в средствах на подписку, могут написать мне, и я дам им персональный доступ к тексту лонгрида (очень надеюсь, что уж в этот-то раз, среди желающих прочесть лонгрид, подписчиков окажется больше 😊)
#AGI #ИИриски
Атмосфера страха, секретности и запугивания накрыла индустрию ИИ.
Воззвание сотрудников OpenAI остановить превращение компании в новый Theranos.
✔️ Сотрудники компаний – лидеров разработки ИИ знают о своей работе такое, что больше не знает никто на свете. Они обладают существенной закрытой информацией о возможностях и ограничениях своих систем, а также об адекватности принимаемых их компаниями защитных мер и уровнях риска различных видов вреда для общества.
✔️ Однако, в настоящее время они вынуждены молчать, ибо строгих обязательств информировать общественность и правительство у них нет, а их компании – бывшие и нынешние работодатели, - крепко запечатывают им рты с помощью «соглашений о неунижении», влекущих страшные юридические и финансовые кары не только за любое разглашение, но и, в принципе, за любую критику компании.
Опубликованное вчера воззвание бывших и нынешних сотрудников OpenAI, поддержанное Йошуф Бенжио, Джеффри Хинтононом и Стюартом Расселом [1,2], подтвердило оба вышеприведенных вывода моего недавнего лонгрида «Так что же увидели Суцкевер и Лейке, сподвигнувшее их уйти» [3].
Публикация воззвания спустя почти 3 недели после того, как OpenAI объявил во внутреннем мемо об отказе от практики «соглашения о неунижении» [4], а также новые детали роли культа личности Сэма Альтмана в управляемом хаосе OpenAI, рассказанные двумя бывшими членами правления [5], позволяют предположить следующее:
1) Атмосфера страха, секретности и запугивания, накрывшая OpenAI, подобно тому, как это было в Theranos, вовсе не выветрилась, а лишь нагнетается теперь более тонким методом, чем «соглашения о неунижении».
2) Подобно тому, как было с Элизабет Холмс в Theranos, ключевой фигурой управляемого хаоса в OpenAI является генеральный директор компании Сэм Альтман:
• культивирующий атмосферу чрезвычайной секретности, страха и запугивания;
• жестко подавляющий любую критику или сомнения в отношении своих идей и подходов;
• требующий полного подчинения от сотрудников и не допускающий никаких возражений или критики в адрес своих действий и видения компании;
• культивирующий культ личности вокруг себя, представляя себя как одаренного гения и визионера, а любые расхождения с его видением или критика рассматриваются, как проявление неверности и потому неприемлемы.
3) То, что среди подписантов воззвания не только бывшие и нынешние сотрудники OpenAI, но также и DeepMind и Anthropic, может быть вызвано не только солидарностью последних к беспределу руководства OpenAI. Это может означать, что атмосфера страха, секретности и запугивания накрывает всю индустрию ИИ.
#AGI #ИИриски
1 https://bit.ly/4e6rgXX
2 https://righttowarn.ai/
3 https://yangx.top/theworldisnoteasy/1943
4 https://bit.ly/4c9jDxV
5 https://bit.ly/3yOedKw
Воззвание сотрудников OpenAI остановить превращение компании в новый Theranos.
✔️ Сотрудники компаний – лидеров разработки ИИ знают о своей работе такое, что больше не знает никто на свете. Они обладают существенной закрытой информацией о возможностях и ограничениях своих систем, а также об адекватности принимаемых их компаниями защитных мер и уровнях риска различных видов вреда для общества.
✔️ Однако, в настоящее время они вынуждены молчать, ибо строгих обязательств информировать общественность и правительство у них нет, а их компании – бывшие и нынешние работодатели, - крепко запечатывают им рты с помощью «соглашений о неунижении», влекущих страшные юридические и финансовые кары не только за любое разглашение, но и, в принципе, за любую критику компании.
Опубликованное вчера воззвание бывших и нынешних сотрудников OpenAI, поддержанное Йошуф Бенжио, Джеффри Хинтононом и Стюартом Расселом [1,2], подтвердило оба вышеприведенных вывода моего недавнего лонгрида «Так что же увидели Суцкевер и Лейке, сподвигнувшее их уйти» [3].
Публикация воззвания спустя почти 3 недели после того, как OpenAI объявил во внутреннем мемо об отказе от практики «соглашения о неунижении» [4], а также новые детали роли культа личности Сэма Альтмана в управляемом хаосе OpenAI, рассказанные двумя бывшими членами правления [5], позволяют предположить следующее:
1) Атмосфера страха, секретности и запугивания, накрывшая OpenAI, подобно тому, как это было в Theranos, вовсе не выветрилась, а лишь нагнетается теперь более тонким методом, чем «соглашения о неунижении».
2) Подобно тому, как было с Элизабет Холмс в Theranos, ключевой фигурой управляемого хаоса в OpenAI является генеральный директор компании Сэм Альтман:
• культивирующий атмосферу чрезвычайной секретности, страха и запугивания;
• жестко подавляющий любую критику или сомнения в отношении своих идей и подходов;
• требующий полного подчинения от сотрудников и не допускающий никаких возражений или критики в адрес своих действий и видения компании;
• культивирующий культ личности вокруг себя, представляя себя как одаренного гения и визионера, а любые расхождения с его видением или критика рассматриваются, как проявление неверности и потому неприемлемы.
3) То, что среди подписантов воззвания не только бывшие и нынешние сотрудники OpenAI, но также и DeepMind и Anthropic, может быть вызвано не только солидарностью последних к беспределу руководства OpenAI. Это может означать, что атмосфера страха, секретности и запугивания накрывает всю индустрию ИИ.
#AGI #ИИриски
1 https://bit.ly/4e6rgXX
2 https://righttowarn.ai/
3 https://yangx.top/theworldisnoteasy/1943
4 https://bit.ly/4c9jDxV
5 https://bit.ly/3yOedKw
NY Times
OpenAI Insiders Warn of a ‘Reckless’ Race for Dominance (Gift Article)
A group of current and former employees is calling for sweeping changes to the artificial intelligence industry, including greater transparency and protections for whistle-blowers.