Forwarded from Анализ данных (Data analysis)
This media is not supported in your browser
VIEW IN TELEGRAM
Кластеризация графов объединяет похожие элементы в группы, что помогает лучшему понять взаимосвязи в данных.
В этой статье инженеры Google рассказывают о ключевых методах, которые позволили им построить мощнейший алгоритм, позволяющий группировать графы с триллионами ребер.
https://research.google/blog/scaling-hierarchical-agglomerative-clustering-to-trillion-edge-graphs/
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
SALSA (Stable Armijo Line Search Adaptation) — метод, разработанный для оптимизации Learning Rate (LR) во время обучения.
Основная концепция метода построена вокруг выполнения линейного поиска для определения наилучшего возможного LR для каждого шага обучения, что дает быструю сходимость и улучшенное обобщение.
Чтобы уменьшить вычислительную нагрузку, Salsa предлагает пошаговый миниатюрный линейный поиск. В нем LR постепенно увеличивается с каждым шагом, а критерий линейного поиска постоянно переоценивается.
Дополнительно, Salsa включает экспоненциальное сглаживание в процесс линейного поиска и устанавливает два экспоненциальных скользящих средних для скорости обучения. Это помогает стабилизировать оптимизацию и уменьшить нестабильность от мини-пакетирования.
Экспериментальные результаты показывают, что Salsa превосходит другие методы оптимизации: 50% сокращение final loss и 1,25 average rank в языковых и графических задачах.
Вычислительные издержки Salsa всего на 3% выше, чем у базового LR метода, что можно воспринимать как незначительным увеличением, учитывая показатели производительности. Salsa достаточно универсален, чтобы использоваться с различными оптимизаторами, и особенно эффективен при обучении современных архитектур, которые чувствительны к скорости обучения.
# Clone repository:
git clone https://github.com/TheMody/No-learning-rates-needed-Introducing-SALSA-Stable-Armijo-Line-Search-Adaptation.git
# Create & activate env:
conda env create -f environment.yml
conda activate sls3
# Install dependencies:
pip install pytorch numpy transformers datasets tensorflow-datasets wandb
# NOTE: custom optimizer is in \salsa\SaLSA.py,comparison version are in \salsa\adam_sls.py:
from salsa.SaLSA import SaLSA
self.optimizer = SaLSA(model.parameters())
# NOTE: typical pytorch forward pass needs to be changed to:
def closure(backwards = False):
y_pred = model(x)
loss = criterion(y_pred, y)
if backwards: loss.backward()
return loss
optimizer.zero_grad()
loss = optimizer.step(closure = closure)
@ai_machinelearning_big_data
#AI #LLM #ML #Train #SALSA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
CUDA 12.8 just dropped with Blackwell support.
TensorCore 5th Generation Family Instructions: https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#tensorcore-5th-generation-instructions
TensorCore 5th Generation Family Instructions: https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#tensorcore-5th-generation-instructions
Forwarded from Machinelearning
⚡️ EasyR1 – эффективный и масштабируемый фреймворк для обучения с подкреплением (RL) с поддержкой мультимодальных данных.
Чем интересен EasyR1?
EasyR1 сочетает в себе алгоритм GRPO, продемонстрированный в DeepSeek R1, и расширение системы veRL для поддержки vision-language моделей, таких как Qwen2.5-VL.
Уже после 30 шагов обучения фреймворк показал прирост производительности на 5% в экспериментах на тестовом наборе Geometry3k.
Это делает его привлекательным инструментом для исследователей и разработчиков, работающих с задачами, где объединяются визуальные и текстовые данные.
Фреймворк спроектирован так, чтобы быть масштабируемым и легко интегрироваться с различными алгоритмами RL, что открывает широкие возможности для дальнейших исследований.
Ожидайте будущих обновлений – в них планируется интеграция дополнительных алгоритмов RL и новых архитектур VLM.
▪ Github
@ai_machinelearning_big_data
#EasyR1 #opensource #GRPO #VLM
Чем интересен EasyR1?
EasyR1 сочетает в себе алгоритм GRPO, продемонстрированный в DeepSeek R1, и расширение системы veRL для поддержки vision-language моделей, таких как Qwen2.5-VL.
Уже после 30 шагов обучения фреймворк показал прирост производительности на 5% в экспериментах на тестовом наборе Geometry3k.
Это делает его привлекательным инструментом для исследователей и разработчиков, работающих с задачами, где объединяются визуальные и текстовые данные.
Фреймворк спроектирован так, чтобы быть масштабируемым и легко интегрироваться с различными алгоритмами RL, что открывает широкие возможности для дальнейших исследований.
Ожидайте будущих обновлений – в них планируется интеграция дополнительных алгоритмов RL и новых архитектур VLM.
▪ Github
@ai_machinelearning_big_data
#EasyR1 #opensource #GRPO #VLM
🔎 Alibi Detect — библиотека, которая замечает подозрительные изменения в поведении входных данных или предсказаний у ML моделей.
Проект довольно универсален — он работает с табличными данными, текстами, изображениями и временными рядами, поддерживая как TensorFlow, так и PyTorch. Особенно ценно, что система умеет ловить не только очевидные выбросы, но и едва заметные изменения в распределениях.
🤖 GitHub
Проект довольно универсален — он работает с табличными данными, текстами, изображениями и временными рядами, поддерживая как TensorFlow, так и PyTorch. Особенно ценно, что система умеет ловить не только очевидные выбросы, но и едва заметные изменения в распределениях.
🤖 GitHub