Прогнозирование урожайности яровых на юге Западной Сибири по данным спутниковых измерений солнечно-индуцированной флуоресценции
📖 Карамзина А.Е., Лагутин А.А., Мордвин Е.Ю. Прогнозирование урожайности яровых зерновых и зернобобовых культур по данным спутниковых наблюдений на юге Западной Сибири
В работе развивается подход к прогнозированию урожайности яровых культур с упреждением в 2–3 месяца, опирающийся на данные об интенсивности индуцированного солнечным светом флуоресцентного излучения.
Во время световой фазы фотосинтеза молекулы хлорофилла в растениях поглощают энергию солнечного света, часть которой излучается в диапазоне длин волн 600–800 нм. Это излучение называется солнечно-индуцированной флуоресценцией (SIF, Solar-induced fluorescence).
В основе предлагаемого метода лежит линейная зависимость между SIF, характеризующей интенсивность фотосинтеза, и первичной валовой продукцией (GPP, gross primary production) региона, являющейся показателем продуктивности “полезной” биомассы, что дает возможность оценить урожайность сельскохозяйственных культур.
В работе использованы измерения потоков SIF, выполненные прибором TROPOMI спутника Sentinel-5P, информация о типе подстилающей поверхности (продукт MCD12Q1 прибора MODIS спутников Terra и Aqua), а также размер посевных площадей по данным Росстата.
• Анализ полученных результатов для периода 2020–2021 гг. показал существование устойчивой связи между максимумом в спутниковых наблюдениях SIF и урожайностью зерновых и зернобобовых культур на территории юга Западной Сибири.
• Предложенный алгоритм позволил сделать оценку урожайности с доверительным интервалом ~7% во второй половине июля, до начала уборочной кампании
• Полученные оценки урожайности для периода 2022–2023 гг. согласуются с опубликованными данными Росстата.
• Представлены оценки урожайности для 2024 г.
📚 Презентация
👩🏫 Видео
Данные SIF обеспечивают хорошую заблаговременность прогнозов урожайности, но сами являются проблемными: их мало, они имеют низкое разрешение и зачастую запаздывают. Первый спутник, специально предназначенный для измерений SIF, планируется запустить в следующем году (после подготовки, длящейся около 20 лет).
Интересно, существуют ли отечественные организации, измеряющие SIF с воздуха? Создаются ли собственные приборы для измерения SIF?
#SIF #сельхоз
📖 Карамзина А.Е., Лагутин А.А., Мордвин Е.Ю. Прогнозирование урожайности яровых зерновых и зернобобовых культур по данным спутниковых наблюдений на юге Западной Сибири
В работе развивается подход к прогнозированию урожайности яровых культур с упреждением в 2–3 месяца, опирающийся на данные об интенсивности индуцированного солнечным светом флуоресцентного излучения.
Во время световой фазы фотосинтеза молекулы хлорофилла в растениях поглощают энергию солнечного света, часть которой излучается в диапазоне длин волн 600–800 нм. Это излучение называется солнечно-индуцированной флуоресценцией (SIF, Solar-induced fluorescence).
В основе предлагаемого метода лежит линейная зависимость между SIF, характеризующей интенсивность фотосинтеза, и первичной валовой продукцией (GPP, gross primary production) региона, являющейся показателем продуктивности “полезной” биомассы, что дает возможность оценить урожайность сельскохозяйственных культур.
В работе использованы измерения потоков SIF, выполненные прибором TROPOMI спутника Sentinel-5P, информация о типе подстилающей поверхности (продукт MCD12Q1 прибора MODIS спутников Terra и Aqua), а также размер посевных площадей по данным Росстата.
• Анализ полученных результатов для периода 2020–2021 гг. показал существование устойчивой связи между максимумом в спутниковых наблюдениях SIF и урожайностью зерновых и зернобобовых культур на территории юга Западной Сибири.
• Предложенный алгоритм позволил сделать оценку урожайности с доверительным интервалом ~7% во второй половине июля, до начала уборочной кампании
• Полученные оценки урожайности для периода 2022–2023 гг. согласуются с опубликованными данными Росстата.
• Представлены оценки урожайности для 2024 г.
📚 Презентация
👩🏫 Видео
Данные SIF обеспечивают хорошую заблаговременность прогнозов урожайности, но сами являются проблемными: их мало, они имеют низкое разрешение и зачастую запаздывают. Первый спутник, специально предназначенный для измерений SIF, планируется запустить в следующем году (после подготовки, длящейся около 20 лет).
Интересно, существуют ли отечественные организации, измеряющие SIF с воздуха? Создаются ли собственные приборы для измерения SIF?
#SIF #сельхоз
👍9
Оценка состояния посевов по данным спутников серии «Метеор-М»
📖 Панов Д.Ю., Сахарова Е.Ю., Чурсин В.В. Оценка состояния посевов по данным КА серии «Метеор-М»
C развитием группировки космических аппаратов серии «Метеор-М», преимуществами которых является высокая периодичность съемки и пространственное разрешение снимков, приоритетным направлением стало применение данных прибора КМСС в оперативном сельскохозяйственном мониторинге. В работе предложена методика оценки состояния посевов яровой пшеницы по трем градациям: плохое, удовлетворительное, хорошее. Для классификации использовался метод машинного обучения XGBoost.
📚 Презентация
👨🏻🏫 Видео
Комплекс многозональной спутниковой съемки (КМСС), стоящий на борту спутников «Метеор-М» №2, обеспечивает пространственное разрешение 60 м и регистрирует отраженное солнечное излучение в трех спектральных каналах: зеленом (0,535–0,575 мкм), красном (0,63–0,68 мкм) и ближнем инфракрасном (0,76–0,9 мкм) в полосе захвата 960 км с периодичностью в сутки.
Данные КМСС имеют гораздо более высокое пространственное разрешение (60 м против 250 м) по сравнению с данными приборов MODIS спутников NASA Terra и Aqua, и могут использоваться для решения задач дистанционной оценки характеристик земной поверхности, оперативного мониторинга и оценки растительного покрова в масштабе региона и страны. До недавнего времени потенциал данных КМСС использовался недостаточно из-за различных технических проблем, связанных с их обработкой. Однако эти проблемы были решены и мы видим появление исследований, направленных на практическое использование данных КМСС-М.
📸 В состав КМСС входят два идентичных многозональных съёмочных устройства МСУ-100ТМ (источник)
#сельхоз #россия
📖 Панов Д.Ю., Сахарова Е.Ю., Чурсин В.В. Оценка состояния посевов по данным КА серии «Метеор-М»
C развитием группировки космических аппаратов серии «Метеор-М», преимуществами которых является высокая периодичность съемки и пространственное разрешение снимков, приоритетным направлением стало применение данных прибора КМСС в оперативном сельскохозяйственном мониторинге. В работе предложена методика оценки состояния посевов яровой пшеницы по трем градациям: плохое, удовлетворительное, хорошее. Для классификации использовался метод машинного обучения XGBoost.
📚 Презентация
👨🏻🏫 Видео
Комплекс многозональной спутниковой съемки (КМСС), стоящий на борту спутников «Метеор-М» №2, обеспечивает пространственное разрешение 60 м и регистрирует отраженное солнечное излучение в трех спектральных каналах: зеленом (0,535–0,575 мкм), красном (0,63–0,68 мкм) и ближнем инфракрасном (0,76–0,9 мкм) в полосе захвата 960 км с периодичностью в сутки.
Данные КМСС имеют гораздо более высокое пространственное разрешение (60 м против 250 м) по сравнению с данными приборов MODIS спутников NASA Terra и Aqua, и могут использоваться для решения задач дистанционной оценки характеристик земной поверхности, оперативного мониторинга и оценки растительного покрова в масштабе региона и страны. До недавнего времени потенциал данных КМСС использовался недостаточно из-за различных технических проблем, связанных с их обработкой. Однако эти проблемы были решены и мы видим появление исследований, направленных на практическое использование данных КМСС-М.
📸 В состав КМСС входят два идентичных многозональных съёмочных устройства МСУ-100ТМ (источник)
#сельхоз #россия
❤6👍3
This media is not supported in your browser
VIEW IN TELEGRAM
Forest Data Partnership опубликовал карту ненарушенных лесов, а также карты распространения какао, масличной пальмы и каучукового дерева
Forest Data Partnership (FDP) — консорциум, объединяющий промышленников, правительственные и некоммерческие организации, заявленная цель которого: остановить и обратить вспять потерю лесов в результате производства сырьевых товаров.
FDP опубликовал на Google Earth Engine карту ненарушенных лесов, а также карты распространения какао, масличной пальмы и каучукового дерева:
🌲 Forest Persistence — карта ненарушенных лесов мира по состоянию на 2020 год. Дает оценку (в диапазоне [0, 1]), которая показывает, занята ли площадь пикселя ненарушенным лесом. Пространственное разрешение — 30 м.
🌴 Palm Probability model 2024a — ежегодные карты распространения масличной пальмы с 2020 по 2023 год. Данные представлены в виде вероятности наличия пальмы в пикселе карты. Модель обеспечивает глобальную точность 92% (при пороге вероятности 0,5). Пространственное разрешение — 10 м. Следующие карты построены по той же методике и с тем же разрешением.
🍃 Cocoa Probability model 2024a — ежегодные карты распространения какао 2020–2023 гг.
🌳 Rubber Tree Probability model 2024a — ежегодные карты распространения каучукового дерева 2020–2023 гг.
🌍 Скрипт GEE
В качестве исходных данных для моделей использованы годовые композиты снимков Sentinel-1, Sentinel-2, ALOS PALSAR-2, а также данные цифровых моделей рельефа Jaxa (AW3D30) и Copernicus (GLO-30).
🖥 Модели реализованы в TensorFlow и находятся в открытом доступе на GitHub.
🔗 Популярное описание результатов на Medium
📖 Описание методики построения карт: https://arxiv.org/pdf/2405.09530
#данные #GEE #лес #сельхоз
Forest Data Partnership (FDP) — консорциум, объединяющий промышленников, правительственные и некоммерческие организации, заявленная цель которого: остановить и обратить вспять потерю лесов в результате производства сырьевых товаров.
FDP опубликовал на Google Earth Engine карту ненарушенных лесов, а также карты распространения какао, масличной пальмы и каучукового дерева:
🌲 Forest Persistence — карта ненарушенных лесов мира по состоянию на 2020 год. Дает оценку (в диапазоне [0, 1]), которая показывает, занята ли площадь пикселя ненарушенным лесом. Пространственное разрешение — 30 м.
🌴 Palm Probability model 2024a — ежегодные карты распространения масличной пальмы с 2020 по 2023 год. Данные представлены в виде вероятности наличия пальмы в пикселе карты. Модель обеспечивает глобальную точность 92% (при пороге вероятности 0,5). Пространственное разрешение — 10 м. Следующие карты построены по той же методике и с тем же разрешением.
🍃 Cocoa Probability model 2024a — ежегодные карты распространения какао 2020–2023 гг.
🌳 Rubber Tree Probability model 2024a — ежегодные карты распространения каучукового дерева 2020–2023 гг.
🌍 Скрипт GEE
В качестве исходных данных для моделей использованы годовые композиты снимков Sentinel-1, Sentinel-2, ALOS PALSAR-2, а также данные цифровых моделей рельефа Jaxa (AW3D30) и Copernicus (GLO-30).
🖥 Модели реализованы в TensorFlow и находятся в открытом доступе на GitHub.
🔗 Популярное описание результатов на Medium
📖 Описание методики построения карт: https://arxiv.org/pdf/2405.09530
#данные #GEE #лес #сельхоз
👍8