Спутник ДЗЗ
3.11K subscribers
2.43K photos
139 videos
187 files
2.18K links
Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot
加入频道
Пространственные отношения между геометриями

Пространственные отношения между объектами — это про то, кто кого касается, пересекает, лежит внутри и т. п.

Выяснить пространственные отношения между геометриями векторов помогает функция relate. Она возвращает логическую матрицу, указывающую на наличие или отсутствие определенных пространственных отношений между геометриями x и y:

relate(x, y, relation, ...)


relation — отношение между геометриями: "intersects", "touches", "crosses", "overlaps", "within", "contains", "covers", "coveredby", "disjoint".

Посмотрим как это работает. Создадим новый полигон, лежащий внутри p1 и не пересекающийся с p2:

merged <- rbind(p1, p2)
p3 <- vect("POLYGON ((4 6, 5 6, 5 8, 4 8, 4 6))")
plot(merged, lwd=2)
lines(p3, lwd=2, col="blue")


Найдем, с какими полигонами из merged пересекается (intersects) p3:

relate(merged, p3, "intersects")
[,1]
[1,] TRUE
[2,] FALSE


p3 пересекается с первым элементом merged, то есть с p1, и не пересекается со вторым (p2).

is.related(x, y, relation, ...) возвращает логический вектор, указывающий на наличие/отсутствие определенных пространственных отношений между x и любой из геометрий в y.

is.related(merged, p3, "intersects")
[1] TRUE FALSE


#R
Данные Sentinel-1 SLC Bursts доступны на платформе CDSE

На платформе Copernicus Data Space Ecosystems (CDSE), через которую распространяются данные европейской программы Copernicus, появился доступ к данным Sentinel-1 SLC Bursts, извлеченных из радарных данных Sentinel-1 SLC.

Burst или “импульс” является атомарной единицей данных Sentinel-1 SLC. При изучении небольших объектов достаточно взять только “импульсы”, покрывающие исследуемый объект, чтобы, например, построить по ним интерферограмму. Размер одного “импульса” составляет около 4% от общего размера файла данных (4–5 Гб).

Доступ по API
Скачивание с помощью Bursts extraction tool
Документация по SLC Bursts

Сейчас пользователи могут искать продукты Sentinel-1 SLC Bursts, начиная со 2 августа 2024 г., но вскоре начнется генерация архивных продуктов SLC Bursts в каталоге.

Ранее подобные данные появились в NASA Alaska Satellite Facility.

#SAR #InSAR #sentinel1 #данные
Наблюдения MethaneSAT позволили уточнить объемы выбросов метана

Снимки, полученные запущенным 4 марта 2024 года спутником MethaneSAT, позволили уточнить объем выбросов метана в нескольких нефтегазоносных бассейнах.

Общий объем выбросов метана при добыче нефти и газа, наблюдаемый на сентябрьских снимках MethaneSAT, варьируется от примерно 50 тонн в час в бассейне Юинта (Uinta, шт. Юта) до 280 тонн в час в Пермском бассейне (шт. Техас).

Исходя из валовой добычи газа, уровень потерь (или интенсивность выбросов), наблюдаемый в Пермском бассейне составляет от 1,8% до 2,9%. Это примерно в девять раз превышает целевой уровень потерь в 0,2%, который должен быть достигнут к 2030 году. В бассейне Юинта с его устаревшей, подверженной утечкам инфраструктурой и низкой добычей нефти и газа, MethaneSAT наблюдал уровень потерь около 9%.

Выбросы, оцененные MethaneSAT, значительно превышают данные, полученные на основе “восходящих” оценок. Даже за вычетом источников, не связанных с нефтью и газом, выбросы метана, наблюдаемые в Пермском бассейне, три-пять раз превышают оценки EPA (Агентство по охране окружающей среды США), а выбросы, наблюдаемые в Южном Каспии, более чем в 10 раз превышают данные независимой глобальной базы данных по выбросам EDGAR в 2022 году.

Пространственное разрешение данных MethaneSAT составляет 100 м (поперек трассы) х 400 м (вдоль трассы), что позволяет оценивать выбросы метана от источников, площадью свыше 1 кв. км. Полоса обзора составляет 200 км.

Сейчас MethaneSAT ведет пробные наблюдения на нескольких нефтегазоносных бассейнах США, в Венесуэле и в Южном Каспии. В полном объеме платформа данных MethaneSAT должна заработать в начале 2025 года.

📸 Концентрация метана в Пермском бассейне (шт. Техас, США) на снимке MethaneSAT.

Источник

#CH4
Planet Labs заключила новый контракт с Global Fishing Watch

Один из ведущих поставщиков оптических данных дистанционного зондирования Земли из космоса, компания Planet Labs (США), объявила о заключении нового контракта с международной некоммерческой организацией Global Fishing Watch (GFW). Шестизначная сделка является расширением текущего соглашения между организациями.

Новый контракт значительно увеличивает площадь зоны мониторинга GFW, опирающегося на оптические снимки Planet с пространственным разрешением 3 метра. Теперь эти снимки будут охватывать большую часть глобальной береговой линии.

GFW намерена составить карту активности маломерных судов в океане. Снимки высокого разрешения помогут обнаруживать малые суда, не использующие автоматические идентификационные системы (AIS) или системы мониторинга судов (VMS), а также более точно определять вид деятельности судна.

Источник

#planet
Уже завтра, 30 ноября в 00.50 (мск), с космодрома Восточный, что в Амурской области, стартует ракета-носитель «Союз-2.1а» со вторым радиолокационным спутником «Кондор-ФКА».

А вы знаете как ночью найти в сибирской тайге этот космодром с высоты полета МКС?
🔎:
1⃣ Находим Благовещенск, крупный и яркий город (1 фото).
2️⃣ Поднимаемся вверх по течению реки Зея и находим город Свободный (2 фото).
3️⃣ От Свободного движемся еще чуть-чуть на север и видим маленький городок Циолковский (3 фото).
4️⃣ Поворачиваем на северо-восток и встречаем стартовый комплекс космодрома Восточный (4 фото).

Получилось?
А у космонавтов на поиск и фото есть максимум минута и никакого компаса 🥸
Долго думать некогда.
Earth Observation Poster_Z-CARD_544x297_insert final.pdf
510.6 KB
Teledyne Space Imaging и Satlantis создают оптический сенсор сверхвысокого разрешения

Британская Teledyne Space Imaging сотрудничает с испанской компанией Satlantis в разработке ключевой электроники для сенсора оптического наблюдения Земли и исследования планет.
Satlantis разработает фронтальную электронику (Front-end Electronics) для разрабатываемого Teledyne сенсор CIS125 TDI.

Сенсор CIS125 Time Delay Integration (TDI) имеет размер пикселя 5 мкм. В сочетании с методами сверхразрешения* он может обеспечить пространственное разрешение менее 10 сантиметров.

В активе Teledyne Space Imaging — поставка съемочной аппаратуры для 139 миссий по наблюдению Земли для ESA, NASA, JAXA и других космических агентств. Еще в 35 миссиях планируется использовать аппаратуру Teledyne. Компания интересуется не только спутниками ДЗЗ, но и высотными псевдоспутниками (HAPS).

*сверхразрешение (super-resolution) — повышение пространственного разрешения данных, как правило, за счет использования методов машинного обучения.

⬆️ Проспект, освещающий участие Teledyne Space Imaging в программах Copernicus и Meteosat Third Generation.

Источник

#UK #испания #оптика
This media is not supported in your browser
VIEW IN TELEGRAM
Запущен "Кондор-ФКА" № 2

29 ноября 2024 года в 21:50:25 всемирного времени (30 ноября в 00:50:25 московского времени) с площадки № 1С космодрома Восточный осуществлён пуск ракеты-носителя "Союз-2.1а" с разгонным блоком “Фрегат” и спутником дистанционного зондирования Земли "Кондор-ФКА" № 2. Космический аппарат с разгонным блоком были успешно выведены на околоземную орбиту, после чего разгонный блок вывел аппарат на целевую орбиту.

📖 Пресс-кит Роскосмоса: «Запуск радиолокационного спутника “Кондор-ФКА” № 2»

Спутник “Кондор-ФКА” № 2 будет вести круглосуточное всепогодное радиолокационное (радарное) наблюдение Земли, получая данные высокого и среднего пространственного разрешения.

В настоящее время на орбите работает 🛰 “Кондор-ФКА” № 1, запущенный 27 мая 2023 года.

Описание спутников “Кондор-ФКА”
Характеристики режимов съёмки

📹 Запуск “Кондор-ФКА” № 2

#россия #SAR
Группировка спутников “Кондор-ФКА” № 1 и № 2

Орбитальная группировка из двух спутников “Кондор-ФКА” обеспечивает проведение радарной съёмки земной поверхности в полосе широт от 85° с.ш. до 85° ю.ш. в детальном прожекторном (ДПР), детальном непрерывном (ДНР) и обзорном режимах (ОР) с возможностью реализации интерферометрической съемки в каждом из указанных режимов.

Группировка “Кондор-ФКА” обеспечивает среднюю периодичность наблюдения произвольного объекта поверхности Земли на широте 30° не более 12–14 часов с вероятностью 0,9 или не более 24–26 часов с вероятностью 0,9 при обеспечении однопроходной интерферометрической съемки объектов двумя космическими аппаратами.

Суточная производительность группировки:

• не менее 200 условных кадров 10 км x 10 км в ДПР с разрешением 1–2 м или
• не менее 200 000 кв. км в ДНР с разрешением 2–3 м или
• не менее 1 000 000 кв. км в ОР с разрешением 6–12 м.

📖 Руководство пользователя данными "Кондор-ФКА"

Источник

#россия #SAR
This media is not supported in your browser
VIEW IN TELEGRAM
Очень хороший комментарий Игоря Афанасьева и Коли Вдовина в конце трансляции Роскосмоса с запуска "Кондор-ФКА"№2.

На фоне кадров полученных первым аппаратом серии Кондор-ФКА объясняют возможности/ режимы съемки (полоса захвата и разрешение ( метров на 1 пиксель) радиолокационной съемки!

Я такие кадры вижу впервые - очень здорово!
Российские ученые создали суперкомпьютерную модель деятельного слоя суши (почвы, озер и растительности), которая поможет прогнозировать влияние климатических изменений на состояние экосистем. Ожидается, что она станет частью национальной климатической модели и национальной системы климатического мониторинга и прогноза.

Вместе с учеными МГУ авторами модели, получившей название TerM (Terrestrial Model), выступили специалисты Института вычислительной математики им. Г. И. Марчука РАН. Разработка использует результаты расчетов, выполненные на суперкомпьютере "Ломоносов-2".

"Внедрение такой модели в составе национальной климатической модели позволит более реалистично моделировать климат и прогнозировать его изменения на территории России с учетом естественных и антропогенных факторов. В будущем, к примеру, можно будет оценивать влияние тех или иных решений в области регулирования выбросов на состояние климатической системы. С учетом сложности климатической системы, прогноз этой реакции возможен только с учетом локальных процессов в деятельном слое суши, которые мы моделируем", — сообщил старший научный сотрудник лаборатории суперкомпьютерного моделирования природно-климатических процессов Научно-исследовательского вычислительного центра МГУ им. М. В. Ломоносова Михаил Варенцов.

Исследователь также рассказал про другую разработку в области моделирования погоды и климата — новую ИИ-модель, которая позволяет прогнозировать эффект городского острова тепла. Остров тепла — это локальная температурная аномалия в городах, которая может усиливать тепловой стресс и создавать дополнительные риски для здоровья горожан в условиях летней жары. Для построения этой модели используется новый суперкомпьютер "МГУ-270", ориентированный на ИИ-задачи.

"Вначале мы разработали модель для центра Москвы, а потом доработали ее, и теперь наша система позволяет получить карту температурах аномалий для всей Московской агломерации. По точности прогноза она сопоставима с классическими подходами и может использоваться для анализа температурных изменений в мегаполисах".

Источник

#россия #климат
Список космических и суборбитальных запусков в ноябре 2024 года [источник].

#справка
launches_2024-11.csv
12.2 KB
Космические и суборбитальные запуски:

* в ноябре 2024 года
* с января по ноябрь 2024 года

#справка
🙏Благодарим, расположив в календарном порядке, телеграм-каналы, делавшие репосты и цитировавшие наши публикации в ноябре 2024 года:

* @gis_proxima
* @agrodt
* @solar_lunar
* @naukaidannye
* @rscc_rscc
* @sabakac
* @grishkafilippov
* @ykuthydromet
* @twrussia
* @UzbekistanTtransparentWorld
* @SCANEX_news
* @wind_vostok
* @IngeniumNotes
* @dobriy_ovchinnikov
* @militaryrussiaru
* @igce01
* @pozivnoy_kazman

Спасибо, коллеги!
1 декабря в России празднуют День математика. Дата приурочена ко дню рождения Николая Ивановича Лобачевского, одного из первооткрывателей неевклидовой геометрии.

С праздником, коллеги!