This media is not supported in your browser
VIEW IN TELEGRAM
Онлайн-лекции “Изменения климата и углерод в наземных экосистемах: мониторинг и адаптация”
С 17 января по 15 февраля 2024 г. пройдет цикл бесплатных онлайн-лекций “Изменения климата и углерод в наземных экосистемах: мониторинг и адаптация”. Лекции проведут участники проекта “РИТМ углерода” — сотрудники научных институтов и научно-образовательных организаций России.
Слушатели узнают новейшие данные об исследованиях климата и его изменений: какую роль играют леса в регулировании климата, что является природными источниками и хранилищами углерода и парниковых газов, что происходит с почвами и почвенными беспозвоночными животными в условиях меняющегося климата и многое другое.
Для участия нужно зарегистрироваться, заполнив анкету.
Ссылка на подключение придет на почту зарегистрированным участникам за 1–2 дня до начала лекции. Записи лекций будут предоставлены на ограниченный срок только зарегистрированным участникам.
Проект “РИТМ углерода” — очень масштабный и интересный. Его участники — ученые, представляющие несколько десятков научных организаций России — планируют разработать национальную систему мониторинга пулов углерода и потоков парниковых газов, на основе интеграции данных наземных измерений, ДЗЗ и математического моделирования.
С некоторыми работами в рамках проекта мы уже знакомы. В частности, это информационно-аналитическая система “Углерод-Э”, разработанная в ИКИ РАН. Школа-конференция по мониторингу леса на прошлогодней конференции в ИКИ, также связана с работами над проектом “РИТМ углерода”.
Публикации результатов работ по проекту, можно найти (и скачать) на сайте проекта, в разделе “Публикации”.
А вот с чем связано ограничение на предоставление записей лекций — непонятно.
#лес #CO2 #климат #конференции
С 17 января по 15 февраля 2024 г. пройдет цикл бесплатных онлайн-лекций “Изменения климата и углерод в наземных экосистемах: мониторинг и адаптация”. Лекции проведут участники проекта “РИТМ углерода” — сотрудники научных институтов и научно-образовательных организаций России.
Слушатели узнают новейшие данные об исследованиях климата и его изменений: какую роль играют леса в регулировании климата, что является природными источниками и хранилищами углерода и парниковых газов, что происходит с почвами и почвенными беспозвоночными животными в условиях меняющегося климата и многое другое.
Для участия нужно зарегистрироваться, заполнив анкету.
Ссылка на подключение придет на почту зарегистрированным участникам за 1–2 дня до начала лекции. Записи лекций будут предоставлены на ограниченный срок только зарегистрированным участникам.
Проект “РИТМ углерода” — очень масштабный и интересный. Его участники — ученые, представляющие несколько десятков научных организаций России — планируют разработать национальную систему мониторинга пулов углерода и потоков парниковых газов, на основе интеграции данных наземных измерений, ДЗЗ и математического моделирования.
С некоторыми работами в рамках проекта мы уже знакомы. В частности, это информационно-аналитическая система “Углерод-Э”, разработанная в ИКИ РАН. Школа-конференция по мониторингу леса на прошлогодней конференции в ИКИ, также связана с работами над проектом “РИТМ углерода”.
Публикации результатов работ по проекту, можно найти (и скачать) на сайте проекта, в разделе “Публикации”.
А вот с чем связано ограничение на предоставление записей лекций — непонятно.
#лес #CO2 #климат #конференции
На сайте Русского географического общества опубликована статья о проекте “РИТМ углерода”. Участники проекта разрабатывают общероссийскую систему мониторинга пулов углерода и потоков парниковых газов, на основе интеграции данных наземных измерений, ДЗЗ и математического моделирования.
Для достоверного учета углеродного баланса необходимы наземные данные о состоянии леса, которых до сих пор очень не хватает исследователям. Чтобы получить эти данные, участники консорциума создают сеть тестовых полигонов ⬆️ .
Помимо развития сети мониторинга, участники проекта создают единую систему сбора, хранения и анализа данных. Также ученые работают над уточнением площади лесов и других наземных экосистем, обновляют коэффициенты для расчета динамики баланса углерода.
С 17 января по 21 февраля 2024 г. проходит цикл бесплатных онлайн-лекций “Изменения климата и углерод в наземных экосистемах: мониторинг и адаптация”. Лекции проводят участники проекта “РИТМ углерода” — сотрудники научных институтов и научно-образовательных организаций России. Для участия нужно зарегистрироваться, заполнив анкету.
Консорциум “РИТМ углерода” на VK
#лес #климат #конференции
Для достоверного учета углеродного баланса необходимы наземные данные о состоянии леса, которых до сих пор очень не хватает исследователям. Чтобы получить эти данные, участники консорциума создают сеть тестовых полигонов ⬆️ .
Помимо развития сети мониторинга, участники проекта создают единую систему сбора, хранения и анализа данных. Также ученые работают над уточнением площади лесов и других наземных экосистем, обновляют коэффициенты для расчета динамики баланса углерода.
С 17 января по 21 февраля 2024 г. проходит цикл бесплатных онлайн-лекций “Изменения климата и углерод в наземных экосистемах: мониторинг и адаптация”. Лекции проводят участники проекта “РИТМ углерода” — сотрудники научных институтов и научно-образовательных организаций России. Для участия нужно зарегистрироваться, заполнив анкету.
Консорциум “РИТМ углерода” на VK
#лес #климат #конференции
В мае 2024 года планируется запуск двух спутников миссии NASA PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) [ссылка]. Они предназначены для измерения потоков тепловой инфракрасной энергии, излучаемой в полярных регионах планеты. Это позволит повысить точность моделей климата.
Количество тепловой энергии, получаемой планетой от Солнца, в идеале должно компенсироваться энергией, которую планета излучает в космос. Разница между входящей и исходящей энергией определяет температуру Земли и формирует климат. Полярные регионы играют ключевую роль в этом процессе: перемешивание воздуха и воды с помощью погодных и океанических течений перемещает тепловую энергию, полученную в тропиках, к полюсам, где она излучается в виде теплового инфракрасного излучения. Энергию этого излучения и будут измерять спутники PREFIRE (страница миссии).
Результаты наблюдений стратосферной обсерватории SOFIA (Stratospheric Observatory for Infrared Astronomy) впервые показали наличие молекул воды на поверхности астероида [ссылка].
Исследователи обратили внимание на группу из четырех относительно близких астероидов с высоким содержанием силикатов. Два астероида, Ирис и Массалия, однозначно показали наличие на их поверхности признаков воды. Вода может быть связана с минералами на поверхности или соединена с силикатными частицами, подобно тому, как это происходит на лунной поверхности.
Использование машинного обучения для прогнозирования погоды и климата [ссылка]
Учебные пособия по прогнозированию от Climate Change AI показывают как создавать прогнозы для трех типов явлений, охватывающих различные временные и пространственные масштабы: 1) Эль-Ниньо, 2) погода синоптического масштаба (synoptic scale), а также 3) экстремальные события на границе синоптического масштаба.
#климат
Количество тепловой энергии, получаемой планетой от Солнца, в идеале должно компенсироваться энергией, которую планета излучает в космос. Разница между входящей и исходящей энергией определяет температуру Земли и формирует климат. Полярные регионы играют ключевую роль в этом процессе: перемешивание воздуха и воды с помощью погодных и океанических течений перемещает тепловую энергию, полученную в тропиках, к полюсам, где она излучается в виде теплового инфракрасного излучения. Энергию этого излучения и будут измерять спутники PREFIRE (страница миссии).
Результаты наблюдений стратосферной обсерватории SOFIA (Stratospheric Observatory for Infrared Astronomy) впервые показали наличие молекул воды на поверхности астероида [ссылка].
Исследователи обратили внимание на группу из четырех относительно близких астероидов с высоким содержанием силикатов. Два астероида, Ирис и Массалия, однозначно показали наличие на их поверхности признаков воды. Вода может быть связана с минералами на поверхности или соединена с силикатными частицами, подобно тому, как это происходит на лунной поверхности.
Использование машинного обучения для прогнозирования погоды и климата [ссылка]
Учебные пособия по прогнозированию от Climate Change AI показывают как создавать прогнозы для трех типов явлений, охватывающих различные временные и пространственные масштабы: 1) Эль-Ниньо, 2) погода синоптического масштаба (synoptic scale), а также 3) экстремальные события на границе синоптического масштаба.
#климат
⭐️ СТРАНЫ / КОМПАНИИ / СПУТНИКИ
Страны: #австралия #германия #индия #иран #испания #канада #китай #португалия #россия #США #япония и т. п.
Но:
#корея обозначает Северную и Южную Кореи
#РБ — Республика Беларусь
#UK — Великобритания
Компании: #planet #maxar
Спутники: #landsat #sentinel1 #sentinel2
⭐️ ДЗЗ
Методы и приборы
#альтиметр
#гиперспектр — гиперспектральная оптическая съемка
#лидар
#оптика — мультиспектральная оптическая съемка
#радиометр — микроволновой радиометр
#dnb — ночная съёмка (day / night band)
#SIF — солнечно-индуцированная флуоресценция хлорофилла
#ro — радиозатменный метод
#SAR — радарная съемка
#InSAR — радарная интерферометрия
#LST — съемка в тепловом инфракрасном диапазоне
#GNSSR — ГНСС-рефлектометрия
#sigint — радиоэлектронная разведка
Виды орбит: #ГСО — геостационарная, #VLEO — сверхнизкая
#основы — обучающие материалы по ДЗЗ
#обучение курсы, обучающие сервисы и т. п.
#история — в основном, история ДЗЗ
#индексы — спектральные индексы
#комбинация — комбинации каналов
Данные
#данные — коллекции данных ДЗЗ, наземных данных, карты и т.п.
#датасет — набор данных для машинного обучения
Дополнительные хештеги, описывающие данные:
#LULC — Land Use & Land Cover
#осадки
#SST — Sea Surface Temperature
#nrt — (near real time) изображения, получаемые в режиме, близком к реальном времени
#debris — космический мусор
#границы — административные границы
#DEM — цифровая модель рельефа (ЦМР)
#keyhole — рассекреченные снимки разведспутников
Литература, справочная информация
#справка — спектральные каналы, орбиты спутников, поиск данных и т.п.
#обзор
#книга — текст книги прикреплён к сообщению.
#журнал — статьи по ДЗЗ, опубликованные в выпуске журнала
Дополнительные хештеги:
#наблюдение — ресурсы для наблюдения спутников и орбиты спутников
#космодромы
#конференции — анонс конференций/семинаров/школ, посвященных ДЗЗ и анализ их материалов.
#конкурсы — анонс конкурсов/чемпионатов/олимпиад.
#МВК — материалы заседаний Межведомственной комиссии (МВК) по использованию результатов космической деятельности.
#снимки — поучительные (хоть в чем-то интересные) снимки, первые снимки
Программные инструменты / Языки
#нейронки #софт #GEE #R #tool #python #ГИС
#ИИ #FM — Foundation Model (Remote Sensing Foundation Model)
⭐️ ОТРАСЛИ / ТЕМАТИЧЕСКИЕ ЗАДАЧИ
#археология #атмосфера #вода #война #засуха #климат #лед #лес #нефть #океан #оползни #наводнение #пожары #почва #растительность #севморпуть #сельхоз #снег
#AGB — надземная биомасса
#ЧС — мониторинг стихийных бедствий и катастроф
#GHG — парниковые газы
Отдельные газы: #CO2 #NO2
#энергетика — космическая энергетика
#SSA — Space Situational Awareness
Страны: #австралия #германия #индия #иран #испания #канада #китай #португалия #россия #США #япония и т. п.
Но:
#корея обозначает Северную и Южную Кореи
#РБ — Республика Беларусь
#UK — Великобритания
Компании: #planet #maxar
Спутники: #landsat #sentinel1 #sentinel2
⭐️ ДЗЗ
Методы и приборы
#альтиметр
#гиперспектр — гиперспектральная оптическая съемка
#лидар
#оптика — мультиспектральная оптическая съемка
#радиометр — микроволновой радиометр
#dnb — ночная съёмка (day / night band)
#SIF — солнечно-индуцированная флуоресценция хлорофилла
#ro — радиозатменный метод
#SAR — радарная съемка
#InSAR — радарная интерферометрия
#LST — съемка в тепловом инфракрасном диапазоне
#GNSSR — ГНСС-рефлектометрия
#sigint — радиоэлектронная разведка
Виды орбит: #ГСО — геостационарная, #VLEO — сверхнизкая
#основы — обучающие материалы по ДЗЗ
#обучение курсы, обучающие сервисы и т. п.
#история — в основном, история ДЗЗ
#индексы — спектральные индексы
#комбинация — комбинации каналов
Данные
#данные — коллекции данных ДЗЗ, наземных данных, карты и т.п.
#датасет — набор данных для машинного обучения
Дополнительные хештеги, описывающие данные:
#LULC — Land Use & Land Cover
#осадки
#SST — Sea Surface Temperature
#nrt — (near real time) изображения, получаемые в режиме, близком к реальном времени
#debris — космический мусор
#границы — административные границы
#DEM — цифровая модель рельефа (ЦМР)
#keyhole — рассекреченные снимки разведспутников
Литература, справочная информация
#справка — спектральные каналы, орбиты спутников, поиск данных и т.п.
#обзор
#книга — текст книги прикреплён к сообщению.
#журнал — статьи по ДЗЗ, опубликованные в выпуске журнала
Дополнительные хештеги:
#наблюдение — ресурсы для наблюдения спутников и орбиты спутников
#космодромы
#конференции — анонс конференций/семинаров/школ, посвященных ДЗЗ и анализ их материалов.
#конкурсы — анонс конкурсов/чемпионатов/олимпиад.
#МВК — материалы заседаний Межведомственной комиссии (МВК) по использованию результатов космической деятельности.
#снимки — поучительные (хоть в чем-то интересные) снимки, первые снимки
Программные инструменты / Языки
#нейронки #софт #GEE #R #tool #python #ГИС
#ИИ #FM — Foundation Model (Remote Sensing Foundation Model)
⭐️ ОТРАСЛИ / ТЕМАТИЧЕСКИЕ ЗАДАЧИ
#археология #атмосфера #вода #война #засуха #климат #лед #лес #нефть #океан #оползни #наводнение #пожары #почва #растительность #севморпуть #сельхоз #снег
#AGB — надземная биомасса
#ЧС — мониторинг стихийных бедствий и катастроф
#GHG — парниковые газы
Отдельные газы: #CO2 #NO2
#энергетика — космическая энергетика
#SSA — Space Situational Awareness
Опубликован интерактивный климатический атлас Copernicus — Copernicus Interactive Climate Atlas Copernicus (https://atlas.climate.copernicus.eu/) — веб-приложение Службы изменения климата Copernicus (C3S), позволяющее анализировать информацию об изменении климата в прошлом и в будущем на основе данных наблюдений, реанализа и прогнозов изменения климата, представленных в Climate Data Store C3S (CDS).
Атлас облегчает глобальную и региональную оценку прошлых тенденций и будущих изменений ключевых климатических переменных и индексов за различные периоды времени по сценариям выбросов или для различных политически значимых уровней глобального потепления (например, 1,5°, 2°, 3° и 4°).
📖Краткое руководство
📖Руководство пользователя
Набор данных атласа обещают вскоре опубликовать в каталоге Climate and Atmosphere Datastore (CADS).
#данные #климат
Атлас облегчает глобальную и региональную оценку прошлых тенденций и будущих изменений ключевых климатических переменных и индексов за различные периоды времени по сценариям выбросов или для различных политически значимых уровней глобального потепления (например, 1,5°, 2°, 3° и 4°).
📖Краткое руководство
📖Руководство пользователя
Набор данных атласа обещают вскоре опубликовать в каталоге Climate and Atmosphere Datastore (CADS).
#данные #климат
Лесоразведение считается хорошим способом поглощения углекислого газа в атмосфере, способствующим снижению температуры. Однако влияние лесоразведения на климат оказалось сложнее, чем просто поглощение углерода. (Weber et al., 2024) оценили воздействие выращивания лесов на альбедо поверхности и состав атмосферы. Они обнаружили, что сочетание уменьшения отражения поверхности после посадки леса и увеличения аэрозольного рассеивания падающего солнечного света компенсирует около трети охлаждения климата, которое происходит за счет удаления углекислого газа, вызванного лесоразведением.
#лес #климат
#лес #климат
Science
Chemistry-albedo feedbacks offset up to a third of forestation’s CO2 removal benefits
Extensive forestation changes atmospheric composition and surface reflectivity, offsetting a third of the cooling caused by carbon dioxide removal.
Спутниковые наблюдения позволяют изучить влияние судовых выбросов на облака [ссылка]
Облака играют двойственную роль в регулировании температуры Земли. Они могут выступать как в роли щита, отражая поступающий солнечный свет обратно в космос, так и в роли одеяла, удерживая идущее от поверхности тепло. Низко висящие над океаном слоисто-кучевые облака оказывают общее охлаждающее действие, потому что они эффективнее отражают солнечный свет, чем удерживают тепло. Выбросы аэрозолей — крошечных частиц диоксида серы и сажи — от морских судов усиливают охлаждающий эффект слоисто-кучевых облаков и могут иметь далеко идущие последствия для глобального климата.
📸 Выбросы диоксида серы над международными судоходными маршрутами в 2010 году.
#климат #атмосфера
Облака играют двойственную роль в регулировании температуры Земли. Они могут выступать как в роли щита, отражая поступающий солнечный свет обратно в космос, так и в роли одеяла, удерживая идущее от поверхности тепло. Низко висящие над океаном слоисто-кучевые облака оказывают общее охлаждающее действие, потому что они эффективнее отражают солнечный свет, чем удерживают тепло. Выбросы аэрозолей — крошечных частиц диоксида серы и сажи — от морских судов усиливают охлаждающий эффект слоисто-кучевых облаков и могут иметь далеко идущие последствия для глобального климата.
📸 Выбросы диоксида серы над международными судоходными маршрутами в 2010 году.
#климат #атмосфера
Резкий рост поглощения углерода в прибрежных областях мирового океана связан с его биологической фиксацией
Между атмосферой и океаном постоянно происходит обмен углекислым газом. Два основных пути, с помощью которых океан поглощает CO2 — физический (растворение в воде) и биологический (захват живыми организмами, например, водорослями в процессе фотосинтеза). Больше всего углерода, от 190 до 300 миллионов тонн ежегодно, поглощают моря на шельфе и другие прибрежные области, на которые приходится всего 7% площади мирового океана. Концентрация углекислого газа вблизи побережий в течение последних десятилетий непропорционально быстро растет, и причины этого пока до конца не ясны.
Ученые под руководством Морица Матиса (Moritz Mathis) из Центра Гельмгольца “Гереон” исследовали поглощение углекислого газа в прибрежной акватории Мирового океана. Они использовали глобальную биогеохимическую модель океана ICON-Coast с разрешением 20 км, с помощью которой рассчитали потоки углерода между океаном и атмосферой.
Моделирование показало, что за XX век поглощение CO2 прибрежными водами выросло более чем в 2 раза и по темпам опередило открытый океан, причем 59% пришлось на биологическое связывание углерода. Его интенсификацию авторы связали с отступлением морского льда и усилением апвеллинга — подъёма богатых питательными веществами холодных вод из глубин океана к его поверхности. Эти изменения в океанической циркуляции объясняют 36% биологического поглощения углерода.
23% биологической фиксации углерода связали с ростом содержания элементов питания в речном стоке, который произошел из-за антропогенной эвтрофикации, то есть насыщения водоёмов веществами биологического происхождения. Роль физического поглощения CO2 в прибрежных водах постепенно снижалась.
Источник
📸 Синим цветом показаны области, где парциальное давление CO2 изменилось в сторону уменьшения, то есть в сторону большего поглощения и меньшего газовыделения (источник).
#океан #климат
Между атмосферой и океаном постоянно происходит обмен углекислым газом. Два основных пути, с помощью которых океан поглощает CO2 — физический (растворение в воде) и биологический (захват живыми организмами, например, водорослями в процессе фотосинтеза). Больше всего углерода, от 190 до 300 миллионов тонн ежегодно, поглощают моря на шельфе и другие прибрежные области, на которые приходится всего 7% площади мирового океана. Концентрация углекислого газа вблизи побережий в течение последних десятилетий непропорционально быстро растет, и причины этого пока до конца не ясны.
Ученые под руководством Морица Матиса (Moritz Mathis) из Центра Гельмгольца “Гереон” исследовали поглощение углекислого газа в прибрежной акватории Мирового океана. Они использовали глобальную биогеохимическую модель океана ICON-Coast с разрешением 20 км, с помощью которой рассчитали потоки углерода между океаном и атмосферой.
Моделирование показало, что за XX век поглощение CO2 прибрежными водами выросло более чем в 2 раза и по темпам опередило открытый океан, причем 59% пришлось на биологическое связывание углерода. Его интенсификацию авторы связали с отступлением морского льда и усилением апвеллинга — подъёма богатых питательными веществами холодных вод из глубин океана к его поверхности. Эти изменения в океанической циркуляции объясняют 36% биологического поглощения углерода.
23% биологической фиксации углерода связали с ростом содержания элементов питания в речном стоке, который произошел из-за антропогенной эвтрофикации, то есть насыщения водоёмов веществами биологического происхождения. Роль физического поглощения CO2 в прибрежных водах постепенно снижалась.
Источник
📸 Синим цветом показаны области, где парциальное давление CO2 изменилось в сторону уменьшения, то есть в сторону большего поглощения и меньшего газовыделения (источник).
#океан #климат
Запущен первый спутник NASA PREFIRE
25 мая 2024 года в 07:41 UTC с площадки LC-1B космодрома Махиа в Новой Зеландии в рамках миссии “Ready, Aim, PREFIRE” выполнен пуск ракеты-носителя Electron-KS компании Rocket Lab с научно-исследовательским спутником NASA PREFIRE-1 (Polar Radiant Energy in the Far-InfraRed Experiment-1). Пуск прошёл успешно, космический аппарат PREFIRE-1 выведен на околоземную орбиту.
Это — первая из двух последовательных миссий PREFIRE (https://prefire.ssec.wisc.edu), которые должна запустить Rocket Lab в рамках контракта с NASA. Спутники PREFIRE предназначены для измерения потоков тепловой инфракрасной энергии, излучаемой в полярных регионах планеты.
Количество тепловой энергии, получаемой планетой от Солнца, в идеале должно компенсироваться энергией, которую планета излучает в космос. Разница между входящей и исходящей энергией определяет температуру Земли и формирует её климат. Ключевую роль в этом процессе играют полярные регионы планеты. Перемешивание воздуха и воды с помощью атмосферных и океанических течений перемещает тепловую энергию, полученную в тропиках, к полюсам, где она излучается в виде теплового инфракрасного излучения. Его энергию и будут измерять спутники PREFIRE. Таким образом, миссия PREFIRE позволит повысить точность моделей климата.
#США #климат
25 мая 2024 года в 07:41 UTC с площадки LC-1B космодрома Махиа в Новой Зеландии в рамках миссии “Ready, Aim, PREFIRE” выполнен пуск ракеты-носителя Electron-KS компании Rocket Lab с научно-исследовательским спутником NASA PREFIRE-1 (Polar Radiant Energy in the Far-InfraRed Experiment-1). Пуск прошёл успешно, космический аппарат PREFIRE-1 выведен на околоземную орбиту.
Это — первая из двух последовательных миссий PREFIRE (https://prefire.ssec.wisc.edu), которые должна запустить Rocket Lab в рамках контракта с NASA. Спутники PREFIRE предназначены для измерения потоков тепловой инфракрасной энергии, излучаемой в полярных регионах планеты.
Количество тепловой энергии, получаемой планетой от Солнца, в идеале должно компенсироваться энергией, которую планета излучает в космос. Разница между входящей и исходящей энергией определяет температуру Земли и формирует её климат. Ключевую роль в этом процессе играют полярные регионы планеты. Перемешивание воздуха и воды с помощью атмосферных и океанических течений перемещает тепловую энергию, полученную в тропиках, к полюсам, где она излучается в виде теплового инфракрасного излучения. Его энергию и будут измерять спутники PREFIRE. Таким образом, миссия PREFIRE позволит повысить точность моделей климата.
#США #климат
This media is not supported in your browser
VIEW IN TELEGRAM
Запущен спутник EarthCARE для исследования облаков и аэрозолей
28 мая 2024 г. в 22:20 UTC с базы Космических сил США “Ванденберг” (шт. Калифорния, США) осуществлён запуск ракеты-носителя Falcon-9FT Block-5 с научным спутником EarthCARE (Earth Cloud, Aerosol and Radiation Explorer). Космический аппарат успешно выведен на околоземную орбиту.
EarthCARE — это шестая из миссий программы ESA Earth Explorer. Она реализуется совместно ESA и JAXA. Основной целью миссии является наблюдение и определение характеристик облаков и аэрозолей, а также измерение отраженного солнечного излучения и инфракрасного излучения, испускаемого поверхностью и атмосферой Земли. Работы над созданием спутника EarthCARE начались ещё в мае 2008 года.
Спутник со стартовой массой 2350 кг оснащён четырьмя приборами:
1️⃣ Лидар Atmospheric Lidar (ATLID) обеспечит измерение вертикальных профилей аэрозолей и тонких облаков. Он будет работать на длине волны 355 нм, имеет приемник с высоким спектральным разрешением, а также канал деполяризации.
2️⃣ Радар Cloud Profiling Radar (CPR) будет измерять вертикальные профили облаков и наблюдать вертикальные скорости облачных частиц с помощью доплеровских измерений. Он работает на частоте 94 ГГц.
3️⃣ Мультиспектральная камера Multi-Spectral Imager (MSI) будет собирать информацию об облаках и аэрозолях с помощью каналов в видимом, ближнем инфракрасном, коротковолновом и тепловом инфракрасном диапазонах.
4️⃣ Радиометр Broad-Band Radiometer (BBR) предназначен для измерения излучения и потоков в верхней части атмосферы. Он имеет один коротковолновый и один длинноволновый канал с тремя фиксированными направлениями обзора, направленными в надир и в корму.
Плановый срок работы EarthCARE на орбите — 3 года.
Отделение EarthCARE от ракеты-носителя
#атмосфера #климат
28 мая 2024 г. в 22:20 UTC с базы Космических сил США “Ванденберг” (шт. Калифорния, США) осуществлён запуск ракеты-носителя Falcon-9FT Block-5 с научным спутником EarthCARE (Earth Cloud, Aerosol and Radiation Explorer). Космический аппарат успешно выведен на околоземную орбиту.
EarthCARE — это шестая из миссий программы ESA Earth Explorer. Она реализуется совместно ESA и JAXA. Основной целью миссии является наблюдение и определение характеристик облаков и аэрозолей, а также измерение отраженного солнечного излучения и инфракрасного излучения, испускаемого поверхностью и атмосферой Земли. Работы над созданием спутника EarthCARE начались ещё в мае 2008 года.
Спутник со стартовой массой 2350 кг оснащён четырьмя приборами:
1️⃣ Лидар Atmospheric Lidar (ATLID) обеспечит измерение вертикальных профилей аэрозолей и тонких облаков. Он будет работать на длине волны 355 нм, имеет приемник с высоким спектральным разрешением, а также канал деполяризации.
2️⃣ Радар Cloud Profiling Radar (CPR) будет измерять вертикальные профили облаков и наблюдать вертикальные скорости облачных частиц с помощью доплеровских измерений. Он работает на частоте 94 ГГц.
3️⃣ Мультиспектральная камера Multi-Spectral Imager (MSI) будет собирать информацию об облаках и аэрозолях с помощью каналов в видимом, ближнем инфракрасном, коротковолновом и тепловом инфракрасном диапазонах.
4️⃣ Радиометр Broad-Band Radiometer (BBR) предназначен для измерения излучения и потоков в верхней части атмосферы. Он имеет один коротковолновый и один длинноволновый канал с тремя фиксированными направлениями обзора, направленными в надир и в корму.
Плановый срок работы EarthCARE на орбите — 3 года.
Отделение EarthCARE от ракеты-носителя
#атмосфера #климат
Запущен второй спутник миссии NASA PREFIRE
5 июня 2024 года в 03:15 UTC с площадки LC-1B космодрома Махиа в Новой Зеландии в рамках миссии “PREFIRE & Ice” выполнен пуск ракеты-носителя Electron-KS компании Rocket Lab с научно-исследовательским спутником NASA PREFIRE-2 (Polar Radiant Energy in the Far-InfraRed Experiment-2). Пуск прошёл успешно, космический аппарат PREFIRE-2 выведен на околоземную орбиту.
Миссия PREFIRE (https://prefire.ssec.wisc.edu) — это 1️⃣ два космических аппарата формата CubeSat 6U, выведенные на приполярные солнечно-синхронных орбиты высотой 525 км и наклонением 97,5°. Каждый аппарат оснащён 2️⃣ миниатюрным 64-канальным инфракрасным спектрометром, работающим в области длин волн 3–54 мкм при ширине спектральных каналов около 0,84 мкм. PREFIRE-1 был выведен на орбиту 25 мая нынешнего года.
Два спутника, которые находятся на асинхронных приполярных орбитах и проходят над одной и той же точкой Земли в разное время, смогут наблюдать за одним и тем же районом с интервалом в несколько часов. Это даёт преимущество парной миссии по сравнению с одиночным спутником, который смог бы посещать один и тот же регион Земли только раз в несколько суток.
Спутники PREFIRE собирают данные для изучения теплового баланса планеты. Важную роль в этом балансе играют полярные регионы. В Арктике и в Антарктике 60% уходящего в космос теплового излучения приходится на волны дальнего инфракрасного диапазона (с длиной волны свыше 15 мкм). Излучение в этом диапазоне и будет измерять PREFIRE.
Данные PREFIRE помогут лучше понять причины таяния полярных льдов и повышения уровня океана. Это, в свою очередь, поможет точнее прогнозировать изменения теплообмена между Землёй и космосом в будущем и, как следствие, будущие изменения климата.
#климат #атмосфера #лед #снег #облака
5 июня 2024 года в 03:15 UTC с площадки LC-1B космодрома Махиа в Новой Зеландии в рамках миссии “PREFIRE & Ice” выполнен пуск ракеты-носителя Electron-KS компании Rocket Lab с научно-исследовательским спутником NASA PREFIRE-2 (Polar Radiant Energy in the Far-InfraRed Experiment-2). Пуск прошёл успешно, космический аппарат PREFIRE-2 выведен на околоземную орбиту.
Миссия PREFIRE (https://prefire.ssec.wisc.edu) — это 1️⃣ два космических аппарата формата CubeSat 6U, выведенные на приполярные солнечно-синхронных орбиты высотой 525 км и наклонением 97,5°. Каждый аппарат оснащён 2️⃣ миниатюрным 64-канальным инфракрасным спектрометром, работающим в области длин волн 3–54 мкм при ширине спектральных каналов около 0,84 мкм. PREFIRE-1 был выведен на орбиту 25 мая нынешнего года.
Два спутника, которые находятся на асинхронных приполярных орбитах и проходят над одной и той же точкой Земли в разное время, смогут наблюдать за одним и тем же районом с интервалом в несколько часов. Это даёт преимущество парной миссии по сравнению с одиночным спутником, который смог бы посещать один и тот же регион Земли только раз в несколько суток.
Спутники PREFIRE собирают данные для изучения теплового баланса планеты. Важную роль в этом балансе играют полярные регионы. В Арктике и в Антарктике 60% уходящего в космос теплового излучения приходится на волны дальнего инфракрасного диапазона (с длиной волны свыше 15 мкм). Излучение в этом диапазоне и будет измерять PREFIRE.
Данные PREFIRE помогут лучше понять причины таяния полярных льдов и повышения уровня океана. Это, в свою очередь, поможет точнее прогнозировать изменения теплообмена между Землёй и космосом в будущем и, как следствие, будущие изменения климата.
#климат #атмосфера #лед #снег #облака
📹Наземный мониторинг бюджета углерода в почвах агроэкосистем Российской Федерации: от решения методических вопросов к созданию национальной сети [ссылка]
Лектор: Козлов Д. Н., к. г. н., первый заместитель директора Почвенного института имени В.В. Докучаева
Таймкоды:
0:10 – О лектории, представление докладчика, тема выступления.
1:09 – Вводное слово.
2:10 – Глобальное потепление и его влияние на Россию.
7:12 – Мера реагирования - стратегия научно-технологического развития РФ, обновленная в 2024 г.
9:06 – Изменение климата и сельское хозяйство.
12:47 – Адаптация к изменению климата. Рамочная конвенция ООН и Парижское соглашение.
15:35 – Потенциал смягчения выбросов парниковых газов в сельском хозяйстве.
24:01 – Роль и функции почв. Запасы углерода в почвах.
28:28 – Органическое вещество почв, его происхождение и роль в цикле углерода.
37:49 – Об исполнении национальных обязательств в рамках Киотского протокола и Парижского соглашения. Специфика изменения запасов углерода на разных типах угодий.
43:04 – Национальный кадастр выбросов. Секторы эмиссии.
46:28 – Совершенствование порядка учета выбросов и поглощения. Реестр почвозащитных агротехнологий.
52:49 – Адаптивно-ландшафтное земледелие, этапы его проектирования.
57:08 – Органическое земледелие – другой компонент почвозащитных технологий. Продукция с улучшенными характеристиками.
1:03:41 – Площадь сельскохозяйственных угодий страны, актуализация государственного кадастра.
1:05:46 – Государственный реестр земель сельхоз назначения. Какие данные должны в него войти? Агрохимслужба России.
1:08:01 – Научно-методическое обеспечение расчётов. Проект «Единая национальная система мониторинга климатически активных газов».
1:11:59 – Определение величины запасов почвенного органического вещества. О руководстве по оценке пулов углерода в почвах агроэкосистем и сети мониторинга.
1:18:55 – Сравнение затрат на различные методы определения углерода.
1:20:40 – О создании национальной системы мониторинга и ВИП ГЗ.
1:23:39 – Ответы на вопросы.
#почва #климат #сельхоз
Лектор: Козлов Д. Н., к. г. н., первый заместитель директора Почвенного института имени В.В. Докучаева
Таймкоды:
0:10 – О лектории, представление докладчика, тема выступления.
1:09 – Вводное слово.
2:10 – Глобальное потепление и его влияние на Россию.
7:12 – Мера реагирования - стратегия научно-технологического развития РФ, обновленная в 2024 г.
9:06 – Изменение климата и сельское хозяйство.
12:47 – Адаптация к изменению климата. Рамочная конвенция ООН и Парижское соглашение.
15:35 – Потенциал смягчения выбросов парниковых газов в сельском хозяйстве.
24:01 – Роль и функции почв. Запасы углерода в почвах.
28:28 – Органическое вещество почв, его происхождение и роль в цикле углерода.
37:49 – Об исполнении национальных обязательств в рамках Киотского протокола и Парижского соглашения. Специфика изменения запасов углерода на разных типах угодий.
43:04 – Национальный кадастр выбросов. Секторы эмиссии.
46:28 – Совершенствование порядка учета выбросов и поглощения. Реестр почвозащитных агротехнологий.
52:49 – Адаптивно-ландшафтное земледелие, этапы его проектирования.
57:08 – Органическое земледелие – другой компонент почвозащитных технологий. Продукция с улучшенными характеристиками.
1:03:41 – Площадь сельскохозяйственных угодий страны, актуализация государственного кадастра.
1:05:46 – Государственный реестр земель сельхоз назначения. Какие данные должны в него войти? Агрохимслужба России.
1:08:01 – Научно-методическое обеспечение расчётов. Проект «Единая национальная система мониторинга климатически активных газов».
1:11:59 – Определение величины запасов почвенного органического вещества. О руководстве по оценке пулов углерода в почвах агроэкосистем и сети мониторинга.
1:18:55 – Сравнение затрат на различные методы определения углерода.
1:20:40 – О создании национальной системы мониторинга и ВИП ГЗ.
1:23:39 – Ответы на вопросы.
#почва #климат #сельхоз
Деревья на возвышенностях являются поглотителями атмосферного метана
Известно, что деревья вносят важный вклад в круговорот углерода на планете, поглощая углекислый газ и преобразуя его в биомассу. Недавняя 📖 работа показала, что деревья на возвышенностях поглощают не только углерод, но и метан.
Метан поглощается не самими деревьями, а колониями метанотрофных бактерий, которые обитают на поверхности коры, извлекают метан из воздуха, окисляют его и превращают в биомассу и углекислый газ. Последний воздействует на климат примерно в 30 раз слабее, чем исходный метан. Особенно быстро метан поглощался корой тропических деревьев, что связано с ускорением метаболизма микробов в теплом и влажном климате.
По оценкам исследователей, кора всех деревьев Земли ежегодно поглощает от 25 до 50 млн тонн метана, что примерно на 10% повышает полезный вклад растительности в борьбу с глобальным потеплением.
#CH4 #климат #лес
Известно, что деревья вносят важный вклад в круговорот углерода на планете, поглощая углекислый газ и преобразуя его в биомассу. Недавняя 📖 работа показала, что деревья на возвышенностях поглощают не только углерод, но и метан.
Метан поглощается не самими деревьями, а колониями метанотрофных бактерий, которые обитают на поверхности коры, извлекают метан из воздуха, окисляют его и превращают в биомассу и углекислый газ. Последний воздействует на климат примерно в 30 раз слабее, чем исходный метан. Особенно быстро метан поглощался корой тропических деревьев, что связано с ускорением метаболизма микробов в теплом и влажном климате.
По оценкам исследователей, кора всех деревьев Земли ежегодно поглощает от 25 до 50 млн тонн метана, что примерно на 10% повышает полезный вклад растительности в борьбу с глобальным потеплением.
#CH4 #климат #лес
Эль-Ниньо всё
Прогрев восточную часть Тихого океана примерно на год, Эль-Ниньо окончательно угас в мае 2024 года. Это природное климатическое явление способствовало рекордно высоким температурам океана в течение многих месяцев, экстремальным осадкам в Африке, низкому ледовому покрову на Великих озерах и сильной засухе в Амазонии и Центральной Америке. По состоянию на июль 2024 года восточная часть Тихого океана находилась в нейтральной фазе, но передышка может оказаться недолгой.
На картах 🗺 показаны аномалии высоты поверхности моря в центральной и восточной частях Тихого океана, наблюдавшиеся 1 июля 2024 года (справа), во время нейтральной фазы, и 4 декабря 2023 года (слева), в период пика Эль-Ниньо. Красным цветом отмечены области, где уровень океана был выше нормы; синим — где уровень моря был ниже среднего; белым — нормальный уровень океана. Использовались данные, полученные со спутника Sentinel-6 Michael Freilich.
#климат #погода #океан
Прогрев восточную часть Тихого океана примерно на год, Эль-Ниньо окончательно угас в мае 2024 года. Это природное климатическое явление способствовало рекордно высоким температурам океана в течение многих месяцев, экстремальным осадкам в Африке, низкому ледовому покрову на Великих озерах и сильной засухе в Амазонии и Центральной Америке. По состоянию на июль 2024 года восточная часть Тихого океана находилась в нейтральной фазе, но передышка может оказаться недолгой.
На картах 🗺 показаны аномалии высоты поверхности моря в центральной и восточной частях Тихого океана, наблюдавшиеся 1 июля 2024 года (справа), во время нейтральной фазы, и 4 декабря 2023 года (слева), в период пика Эль-Ниньо. Красным цветом отмечены области, где уровень океана был выше нормы; синим — где уровень моря был ниже среднего; белым — нормальный уровень океана. Использовались данные, полученные со спутника Sentinel-6 Michael Freilich.
#климат #погода #океан
Изменения климата: причины, риски, последствия, проблемы адаптации и регулирования
📚Изменения климата: причины, риски, последствия, проблемы адаптации и регулирования / под ред. И.И. Мохова, А.А. Макоско, А.В. Чернокульского. — М.: РАН, 2024. — 360 с.
Коллективная монография содержит результаты исследований ведущих ученых страны по актуальным вопросам проблематики изменения климата. Рассмотрены климатические процессы и изменения, экстремальные режимы, предсказуемость; моделирование изменений земной климатической системы; экологические и социально-экономические последствия климатических изменений, риски и возможности; проблемы адаптации к изменениям климата; проблемы регулирования антропогенных воздействий на климат; углеродная нейтральность.
Ознакомиться с книгой можно по 🔗ссылке.
#климат #книга
📚Изменения климата: причины, риски, последствия, проблемы адаптации и регулирования / под ред. И.И. Мохова, А.А. Макоско, А.В. Чернокульского. — М.: РАН, 2024. — 360 с.
Коллективная монография содержит результаты исследований ведущих ученых страны по актуальным вопросам проблематики изменения климата. Рассмотрены климатические процессы и изменения, экстремальные режимы, предсказуемость; моделирование изменений земной климатической системы; экологические и социально-экономические последствия климатических изменений, риски и возможности; проблемы адаптации к изменениям климата; проблемы регулирования антропогенных воздействий на климат; углеродная нейтральность.
Ознакомиться с книгой можно по 🔗ссылке.
#климат #книга
This media is not supported in your browser
VIEW IN TELEGRAM
Глобальный набор данных интенсивности городских островов тепла (2001–2020)
Эффект городского острова тепла (Urban Heat Island, UHI), характеризующийся локальным потеплением над городскими территориями, является одним из самых известных последствий урбанизации для климата. Традиционные оценки интенсивности UHI разнятся из-за фокусировки исследований на “обычном” UHI (или canopy UHI), присутствие которого оценивается по приземной температуре воздуха, или на “поверхностном” UHI (surface UHI), который оценивается по температуре земной поверхности, а также из-за рассмотрения случаев безоблачного неба (clear-sky) и присутствия облаков (all-sky).
В 📖 работе рассматриваются оба вида городских островов тепла как при наличии, так и в отсутствие облачности. Для приведения данных “к общему знаменателю” предлагается метод динамической равной площади (dynamic equal-area, DEA).
Применяя метод DEA и интегрируя данные о температуре по сетке, был получен глобальный набор данных интенсивности UHI, охватывающий более 10000 городов за период более 20 лет с ежемесячным временным разрешением. Этот набор данных предлагает многосторонние оценки интенсивности UHI. Значения температуры земной поверхности получены из наблюдений приборов MODIS спутников Terra и Aqua.
Исследования показали, что интенсивность UHI больше нуля в более чем 80% исследованных городов, со среднегодовым глобальным значением около 1,0°C (днем) и 0,8°C (ночью) для поверхностного UHI, и около 0,5°C для обычного UHI.
В более чем 60% городов отмечается межгодовая тенденция к увеличению интенсивности UHI. При этом глобальные средние тенденции превышают 0,1°C за десятилетие (день) и 0,06°C за десятилетие (ночь) для поверхностного UHI, и чуть более 0,03°C за десятилетие для обычного UHI.
Выявлена положительная корреляция между величиной и тенденцией интенсивности UHI, указывающая на то, что в городах с более интенсивным UHI наблюдается и более быстрый рост интенсивности UHI с течением времени.
Набор данных находится в открытом доступе:
🛢 Global Urban Heat Island Intensity Dataset
🌍 Urban Heat Island Intensity (UHII) на GEE
#LST #климат #данные #GEE
Эффект городского острова тепла (Urban Heat Island, UHI), характеризующийся локальным потеплением над городскими территориями, является одним из самых известных последствий урбанизации для климата. Традиционные оценки интенсивности UHI разнятся из-за фокусировки исследований на “обычном” UHI (или canopy UHI), присутствие которого оценивается по приземной температуре воздуха, или на “поверхностном” UHI (surface UHI), который оценивается по температуре земной поверхности, а также из-за рассмотрения случаев безоблачного неба (clear-sky) и присутствия облаков (all-sky).
В 📖 работе рассматриваются оба вида городских островов тепла как при наличии, так и в отсутствие облачности. Для приведения данных “к общему знаменателю” предлагается метод динамической равной площади (dynamic equal-area, DEA).
Применяя метод DEA и интегрируя данные о температуре по сетке, был получен глобальный набор данных интенсивности UHI, охватывающий более 10000 городов за период более 20 лет с ежемесячным временным разрешением. Этот набор данных предлагает многосторонние оценки интенсивности UHI. Значения температуры земной поверхности получены из наблюдений приборов MODIS спутников Terra и Aqua.
Исследования показали, что интенсивность UHI больше нуля в более чем 80% исследованных городов, со среднегодовым глобальным значением около 1,0°C (днем) и 0,8°C (ночью) для поверхностного UHI, и около 0,5°C для обычного UHI.
В более чем 60% городов отмечается межгодовая тенденция к увеличению интенсивности UHI. При этом глобальные средние тенденции превышают 0,1°C за десятилетие (день) и 0,06°C за десятилетие (ночь) для поверхностного UHI, и чуть более 0,03°C за десятилетие для обычного UHI.
Выявлена положительная корреляция между величиной и тенденцией интенсивности UHI, указывающая на то, что в городах с более интенсивным UHI наблюдается и более быстрый рост интенсивности UHI с течением времени.
Набор данных находится в открытом доступе:
🛢 Global Urban Heat Island Intensity Dataset
🌍 Urban Heat Island Intensity (UHII) на GEE
#LST #климат #данные #GEE
Сенсорно-независимые данные MODIS & VIIRS LAI/FPAR (2000–2022)
Набор пространственных данных Sensor-Independent MODIS & VIIRS LAI/FPAR CDR (2000–2022) охватывает важнейшие биофизические параметры: индекс листовой поверхности (Leaf Area Index, LAI) и долю фотосинтетически активной радиации (Fraction of Photosynthetically Active Radiation, FPAR или FAPAR*), необходимые для характеристики наземных экосистем.
При подготовке данных особое внимание уделялось ограничениям, имевшимся в существующих глобальных продуктах LAI/FPAR, в том числе, проблемам пространственно-временной согласованности и точности. Методика создания набора данных описана в:
📖 Pu, J., Yan, K., Roy, S., Zhu, Z., Rautiainen, M., Knyazikhin, Y., & Myneni, R. B. (2024). Sensor-independent LAI/FPAR CDR: reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022. Earth System Science Data, 16(1), 15–34. https://doi.org/10.5194/essd-16-15-2024
Данные создавались как сенсорно-независимые на основе стандартных продуктов LAI/FPAR Terra MODIS, Aqua MODIS и VIIRS. Они охватывают временной интервал с 2000 по 2022 год и содержат данные LAI/FPAR в различных пространственных разрешениях: 500 м, 5 км и 0,05° с шагами по времени 8 суток и два месяца. Набор данных доступен в синусоидальной проекции, а также в WGS 1984.
Доступ к данным:
🛢 Zenodo
🌍 Google Earth Engine
📊 Схема создания данных.
*FPAR или FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) — доля падающей фотосинтетически активной радиации (400–700 нм), поглощаемой растительностью.
#данные #климат #GEE
Набор пространственных данных Sensor-Independent MODIS & VIIRS LAI/FPAR CDR (2000–2022) охватывает важнейшие биофизические параметры: индекс листовой поверхности (Leaf Area Index, LAI) и долю фотосинтетически активной радиации (Fraction of Photosynthetically Active Radiation, FPAR или FAPAR*), необходимые для характеристики наземных экосистем.
При подготовке данных особое внимание уделялось ограничениям, имевшимся в существующих глобальных продуктах LAI/FPAR, в том числе, проблемам пространственно-временной согласованности и точности. Методика создания набора данных описана в:
📖 Pu, J., Yan, K., Roy, S., Zhu, Z., Rautiainen, M., Knyazikhin, Y., & Myneni, R. B. (2024). Sensor-independent LAI/FPAR CDR: reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022. Earth System Science Data, 16(1), 15–34. https://doi.org/10.5194/essd-16-15-2024
Данные создавались как сенсорно-независимые на основе стандартных продуктов LAI/FPAR Terra MODIS, Aqua MODIS и VIIRS. Они охватывают временной интервал с 2000 по 2022 год и содержат данные LAI/FPAR в различных пространственных разрешениях: 500 м, 5 км и 0,05° с шагами по времени 8 суток и два месяца. Набор данных доступен в синусоидальной проекции, а также в WGS 1984.
Доступ к данным:
🛢 Zenodo
🌍 Google Earth Engine
📊 Схема создания данных.
*FPAR или FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) — доля падающей фотосинтетически активной радиации (400–700 нм), поглощаемой растительностью.
#данные #климат #GEE
Обзор методов интерпретируемого машинного обучения для прогнозирования погоды и климата
В последнее время передовые модели машинного обучения достигли высокой точности прогнозирования погоды и климата. Большинство из этих моделей является “черными ящиками”: они выдают результаты, не позволяя пользователю заглянуть внутрь, чтобы разобраться, как именно был получен тот или иной прогноз. Поэтому важную роль приобретает развитие интерпретируемых методов машинного обучения.
В 📖 статье рассмотрены современные подходы к интерпретируемому машинному обучению, применяемые для метеорологических прогнозов. Подходы делятся на две группы: (1) методы интерпретации post-hoc, объясняющие предварительно обученные модели, такие как методы атрибуции на основе возмущений, теории игр и градиентные методы; (2) разработка интерпретируемых моделей с нуля с помощью таких архитектур, как ансамбли деревьев или объясняемые (explainable) нейронные сети. Коротко описан каждый метод, и то как именно он позволяет понять прогнозы, раскрывая метеорологические взаимосвязи, улавливаемые машинным обучением. В финале работы обсуждаются проблемы исследования и перспективы на будущее.
📖 Yang, R., Hu, J., Li, Z., Mu, J., Yu, T., Xia, J., Li, X., Dasgupta, A., & Xiong, H. (2024). Interpretable machine learning for weather and climate prediction: A review. Atmospheric Environment, 338, 120797. https://doi.org/10.1016/j.atmosenv.2024.120797
#нейронки #погода #ИИ #климат
В последнее время передовые модели машинного обучения достигли высокой точности прогнозирования погоды и климата. Большинство из этих моделей является “черными ящиками”: они выдают результаты, не позволяя пользователю заглянуть внутрь, чтобы разобраться, как именно был получен тот или иной прогноз. Поэтому важную роль приобретает развитие интерпретируемых методов машинного обучения.
В 📖 статье рассмотрены современные подходы к интерпретируемому машинному обучению, применяемые для метеорологических прогнозов. Подходы делятся на две группы: (1) методы интерпретации post-hoc, объясняющие предварительно обученные модели, такие как методы атрибуции на основе возмущений, теории игр и градиентные методы; (2) разработка интерпретируемых моделей с нуля с помощью таких архитектур, как ансамбли деревьев или объясняемые (explainable) нейронные сети. Коротко описан каждый метод, и то как именно он позволяет понять прогнозы, раскрывая метеорологические взаимосвязи, улавливаемые машинным обучением. В финале работы обсуждаются проблемы исследования и перспективы на будущее.
📖 Yang, R., Hu, J., Li, Z., Mu, J., Yu, T., Xia, J., Li, X., Dasgupta, A., & Xiong, H. (2024). Interpretable machine learning for weather and climate prediction: A review. Atmospheric Environment, 338, 120797. https://doi.org/10.1016/j.atmosenv.2024.120797
#нейронки #погода #ИИ #климат