Спутник ДЗЗ
3.89K subscribers
3.05K photos
169 videos
215 files
2.79K links
Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot
加入频道
Natural Lands Map

Лаборатория Land & Carbon Lab в сотрудничестве с Всемирным фондом дикой природы и компанией Systemiq разработала Natural Lands Map (NLM) — карту естественного земного покрова на 2020 год с пространственным разрешением 30 метров.

NLM разграничивает естественные и искусственные почвенно-растительные покровы. Для измерения преобразования естественного покрова использованы определения естественных экосистем и естественных лесов, принятые в рамках инициативы Accountability Framework Initiative (AFi).

Карта объединила глобальные и локальные данные. В первую очередь, это глобальные данные о растительном покрове 2020 года лаборатории GLAD Университета Мэриленда и данные ESA WorldCover 2020 года. Локальные данные добавлялись в уже полученную глобальную карту, где получали приоритет над глобальными данными.

Средняя общая точность карты составляет 91,2%. Районы с локальными данными в целом лучше отражают местные ландшафты. Проблемы с точностью по некоторым территориям и земным покровам связаны с недостатком соответствующих данных. Так, на момент публикации карты не существовало глобальных данных, разграничивающих естественные луга и пастбища, в результате чего классы естественной и искусственной короткой растительности (short vegetation) оказались неточными. Аналогичным образом, во многих странах Европейского союза и в России есть лесопосадки, но нет общедоступных данных о лесопосадках, которые помогли бы лучше различать естественные и посаженные леса.

Подробности о принятых определениях и технической стороне реализации NLM приведены в:

📖 SBTN Natural Lands Map – Technical Documentation

Компании могут использовать данные NLM, чтобы оценить, не привела ли их деятельность к обезлесению (деградации леса) после 2020 года. Для этого используется класс естественных лесов (natural forests) в NLM. Однако нужно учитывать различия в определении обезлесения, между NLM и другими документами, например, European Union Deforestation Regulation (EUDR). Подробная информация об этих различиях содержится в технической документации к NLM ⬆️, а также в AFi Operational Guidance on Applying the Definitions Related to Deforestation and Conversion.

Текущая версия карты находится в открытом доступе, имеет открытый исходный код, а также доступна на Google Earth Engine:

🛢 GitHub репозиторий
🌍 GEE: SBTN Natural Lands Map v1

#лес #данные #LULC
🔥6👍2
Метод прогнозирования нашествия лесных насекомых-вредителей по данным спутниковых наблюдений [ссылка]

Учёные Красноярского научного центра СО РАН вместе с коллегами из Москвы и Новосибирска разработали метод прогнозирования вспышек лесных насекомых-вредителей. Он позволяют предсказать массовое размножение насекомых за два года до появления видимых повреждений деревьев.

Массовое размножение насекомых-вредителей является одной из главных причин ослабления и гибели лесов. Основным способом оценки состояния леса на больших территориях является дистанционное зондирование Земли (ДЗЗ) со спутников. Однако различные вегетационные индексы, построенные по данным ДЗЗ, диагностируют признаки ослабления деревьев лишь на поздних стадиях, когда исправить положение уже почти невозможно. Поэтому прогнозирование массового размножения насекомых и повышение устойчивости лесов должны быть основными задачами в борьбе с вредителями.

Исследования российских учёных показали, что за два года до видимых повреждений деревьев насекомыми, реакция деревьев на изменения окружающей среды, в частности на изменение температуры почвы, замедляется. В итоге, для выявления зон будущих вспышек использовались не данные мультиспектрального анализа, а реакция спектральных характеристик в ответ на изменение температуры. В роли индикатора состояния растений и их реакции на климатические условия используется чувствительности изменений вегетационного индекса NDVI к изменениям температуры поверхности земли.

Разработанная методика ⬇️ способна обнаруживать очень ранние стадии увеличения популяции насекомых, что позволит принимать своевременные меры по защите лесов.

📖 Kovalev, A., Tarasova, O., Soukhovolsky, V., & Ivanova, Y. (2024). Is It Possible to Predict a Forest Insect Outbreak? Backtesting Using Remote Sensing Data. Forests, 15(8), 1458. https://doi.org/10.3390/f15081458

#россия #лес
9👍6
Компания Planet представила продукт для глобального мониторинга лесов [ссылка]

Продукт Forest Carbon Monitoring (FCM) компании Planet предлагает ежеквартальные оценки количества углерода, запасенного в ветвях, листьях и других надземных частях растений с разрешением 3 метра на пиксель. Кроме того, он показывает высоту полога и проективное покрытие (canopy cover) — информацию, которая необходима для добровольных углеродных рынков и для соблюдения нормативных требований по борьбе с обезлесением.

Ежеквартальные данные FCM начинаются с 2021 года.

FCM создан с помощью методов машинного обучения и основывается на снимках группировки Planet, состоящей из примерно 130 спутников, а также данных авиационных и космических лидаров, спутников Sentinel-2, Landsat и ALOS-PALSAR-2.

Planet ожидает, что данные FCM будут использоваться для получения углеродных кредитов и компенсаций, а также при проверке соблюдения требований EUDR — регламент Европейского союза о продукции, не подверженной обезлесению, который вступит в силу 30 декабря 2024 года.

В прошлом году Planet выпустила продукт Forest Carbon Diligence с пространственным разрешением 30 метров, который имеет сходный состав, но не использует данных спутников Planet.

🗺 Пример слоя данных Forest Carbon Monitoring для региона Путамайо в Амазонии (источник).

#planet #лес #AGB
👍5