Карты высоты древесного полога с разрешением 1 метр
Глобальные данные Global Canopy Height Maps содержат информацию о высоте древесного полога с пространственным разрешением 1 м. Данные получены Meta и World Resources Institute на основе спутниковых снимков с 2009 по 2020 год и модели искусственного интеллекта DiNOv2. Средняя абсолютная ошибка (mean absolute error) оценки высоты полога составляет 2,8 м.
🌐 Данные на Google Earth Engine
📖 Tolan, J. et al. 2024. Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sensing of Environment, 300, p.113888. https://doi.org/10.1016/j.rse.2023.113888
📸 Глобальная карта высоты полога
#лес #AGB #данные #GEE
Глобальные данные Global Canopy Height Maps содержат информацию о высоте древесного полога с пространственным разрешением 1 м. Данные получены Meta и World Resources Institute на основе спутниковых снимков с 2009 по 2020 год и модели искусственного интеллекта DiNOv2. Средняя абсолютная ошибка (mean absolute error) оценки высоты полога составляет 2,8 м.
🌐 Данные на Google Earth Engine
📖 Tolan, J. et al. 2024. Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sensing of Environment, 300, p.113888. https://doi.org/10.1016/j.rse.2023.113888
📸 Глобальная карта высоты полога
#лес #AGB #данные #GEE
This media is not supported in your browser
VIEW IN TELEGRAM
Tallo: глобальная база данных аллометрических показателей деревьев
Данные о размерах и форме деревьев, такие как диаметр ствола, высота и размер кроны, лежат в основе широкого спектра экологических исследований, от разработки и проверки моделей динамики лесов до оценки запасов углерода леса, а также интеграции снимков дистанционного зондирования в программы мониторинга лесов. Добыть такие данные, особенно по отдельным регионам мира и конкретным таксономическим группам, бывает весьма непросто. База данных Tallo призвана помочь в решении этой проблемы.
Tallo — это коллекция из 498 838 геопривязанных и таксономически стандартизированных записей об отдельных деревьях, для которых были измерены диаметр ствола, высота и/или радиус кроны. Эти данные были собраны на 61 856 глобально распределенных участках, охватывающих все основные лесные и безлесные биомы. Большинство деревьев в базе данных идентифицированы до вида (88%). Tallo содержит данные для 5163 видов, распределенных по 1453 родам и 187 семействам растений. База находится в открытом доступе под лицензией CC-BY 4.0.
🛢 Данные Tallo на Zenodo
🗺 Данные Tallo на GEE
📖 Jucker, T., Fischer, F. J., Chave, J., Usoltsev, V. et al. (2022). Tallo: A global tree allometry and crown architecture database. Global Change Biology, 28(17), 5254–5268. Portico. https://doi.org/10.1111/gcb.16302
#лес #данные
Данные о размерах и форме деревьев, такие как диаметр ствола, высота и размер кроны, лежат в основе широкого спектра экологических исследований, от разработки и проверки моделей динамики лесов до оценки запасов углерода леса, а также интеграции снимков дистанционного зондирования в программы мониторинга лесов. Добыть такие данные, особенно по отдельным регионам мира и конкретным таксономическим группам, бывает весьма непросто. База данных Tallo призвана помочь в решении этой проблемы.
Tallo — это коллекция из 498 838 геопривязанных и таксономически стандартизированных записей об отдельных деревьях, для которых были измерены диаметр ствола, высота и/или радиус кроны. Эти данные были собраны на 61 856 глобально распределенных участках, охватывающих все основные лесные и безлесные биомы. Большинство деревьев в базе данных идентифицированы до вида (88%). Tallo содержит данные для 5163 видов, распределенных по 1453 родам и 187 семействам растений. База находится в открытом доступе под лицензией CC-BY 4.0.
🛢 Данные Tallo на Zenodo
🗺 Данные Tallo на GEE
📖 Jucker, T., Fischer, F. J., Chave, J., Usoltsev, V. et al. (2022). Tallo: A global tree allometry and crown architecture database. Global Change Biology, 28(17), 5254–5268. Portico. https://doi.org/10.1111/gcb.16302
#лес #данные
Оценка уровня повреждения леса вредителями по временным рядам вегетационного индекса
При анализе повреждений леса вредителями по данным дистанционного зондирования возникают две задачи: 1) обнаружение древостоев, пострадавших от вредителей и 2) оценка уровня повреждения. Для решения первой задачи бывает достаточно единственного спутникового снимка. Для оценки уровня ущерба необходимо использовать сезонный временной ряд данных ДЗЗ.
Одним из наиболее распространенных в Северном полушарии вредителей леса является непарный шелкопряд (Lymantria dispar L). Гусеницы этого вида объедают листву лиственных деревьев. Тем не менее, значительная часть повреждённых деревьев впоследствии восстанавливается. Именно эта особенность позволила выделить очаги поражения непарным шелкопрядом.
Учёные из Института леса имени В. Н. Сукачева СО РАН (Красноярск) с коллегами из Института систематики и экологии животных СО РАН (Новосибирск) предложили выявлять очаги размножения непарного шелкопряда по временным рядам нормализованного разностного вегетационного индекса (NDVI), построенного по данным спутника Sentinel-2.
Оказалось, что у лесов, повреждённых вредителем, вегетационный индекс падает примерно на 25–50% в конце мая - начале июня — в период наибольшей активности гусениц непарного шелкопряда. В здоровых лесах такого не наблюдается. По тому, насколько снизился индекс в поражённых лесах, можно рассчитать нанесенный вредителями урон.
Исследователи сравнили данные, полученные с помощью такого подхода, с оценками, которые дали наземные наблюдения за состоянием деревьев, и определили, что точность дистанционного метода составляет 90%.
🌳 Источник
📊 Типичная кривая сезонной динамики NDVI для повреждённого вредителем (красный цвет) и контрольного участка здорового леса (зелёный цвет) (источник)
#лес
При анализе повреждений леса вредителями по данным дистанционного зондирования возникают две задачи: 1) обнаружение древостоев, пострадавших от вредителей и 2) оценка уровня повреждения. Для решения первой задачи бывает достаточно единственного спутникового снимка. Для оценки уровня ущерба необходимо использовать сезонный временной ряд данных ДЗЗ.
Одним из наиболее распространенных в Северном полушарии вредителей леса является непарный шелкопряд (Lymantria dispar L). Гусеницы этого вида объедают листву лиственных деревьев. Тем не менее, значительная часть повреждённых деревьев впоследствии восстанавливается. Именно эта особенность позволила выделить очаги поражения непарным шелкопрядом.
Учёные из Института леса имени В. Н. Сукачева СО РАН (Красноярск) с коллегами из Института систематики и экологии животных СО РАН (Новосибирск) предложили выявлять очаги размножения непарного шелкопряда по временным рядам нормализованного разностного вегетационного индекса (NDVI), построенного по данным спутника Sentinel-2.
Оказалось, что у лесов, повреждённых вредителем, вегетационный индекс падает примерно на 25–50% в конце мая - начале июня — в период наибольшей активности гусениц непарного шелкопряда. В здоровых лесах такого не наблюдается. По тому, насколько снизился индекс в поражённых лесах, можно рассчитать нанесенный вредителями урон.
Исследователи сравнили данные, полученные с помощью такого подхода, с оценками, которые дали наземные наблюдения за состоянием деревьев, и определили, что точность дистанционного метода составляет 90%.
🌳 Источник
📊 Типичная кривая сезонной динамики NDVI для повреждённого вредителем (красный цвет) и контрольного участка здорового леса (зелёный цвет) (источник)
#лес
Новая модель оценки высоты лесного полога [ссылка]
Предлагается модель оценки высоты лесного полога в глобальном масштабе, основанная на спутниковых данных. По словам авторов, “модель использует передовые методы предварительной обработки данных, прибегает к новой функции потерь, разработанной для борьбы с неточностями геолокации, присущими наземным измерениям высоты, и использует данные миссии Shuttle Radar Topography Mission для эффективной фильтрации ошибочных меток в горных районах, повышая надежность наших прогнозов в этих районах”. Сравнение результатов с наземными данными даёт MAE = 2,43 м и RMSE = 4,73 м в целом, а также MAE = 4,45 и RMSE = 6,72 метров для деревьев высотой более пяти метров, что лучше существующих глобальных карт — этой и этой. Полученная карта высот, а также лежащий в её основе подход, должны облегчить и улучшить экологический анализ в глобальном масштабе, в том числе крупномасштабный мониторинг лесов и биомассы.
В списке авторов есть Sassan Saatchi — известный специалист в данной области.
🛢 Код и документация
1️⃣ Схема расчёта глобальных карт высоты лесного полога.
2️⃣ Визуальное сравнение фрагментов различных глобальных карт высот лесного полога (предлагаемая — Ours).
#лес #AGB #данные
Предлагается модель оценки высоты лесного полога в глобальном масштабе, основанная на спутниковых данных. По словам авторов, “модель использует передовые методы предварительной обработки данных, прибегает к новой функции потерь, разработанной для борьбы с неточностями геолокации, присущими наземным измерениям высоты, и использует данные миссии Shuttle Radar Topography Mission для эффективной фильтрации ошибочных меток в горных районах, повышая надежность наших прогнозов в этих районах”. Сравнение результатов с наземными данными даёт MAE = 2,43 м и RMSE = 4,73 м в целом, а также MAE = 4,45 и RMSE = 6,72 метров для деревьев высотой более пяти метров, что лучше существующих глобальных карт — этой и этой. Полученная карта высот, а также лежащий в её основе подход, должны облегчить и улучшить экологический анализ в глобальном масштабе, в том числе крупномасштабный мониторинг лесов и биомассы.
В списке авторов есть Sassan Saatchi — известный специалист в данной области.
🛢 Код и документация
1️⃣ Схема расчёта глобальных карт высоты лесного полога.
2️⃣ Визуальное сравнение фрагментов различных глобальных карт высот лесного полога (предлагаемая — Ours).
#лес #AGB #данные
Глобальные карты потоков углерода лесов (2001–2023)
Недавнее обновление данных Global Forest Carbon Fluxes (GFCF) позволяет изучать глобальные потоки углерода лесов в период с 2001 по 2023 год. Данные разделены на чистый поток (баланс между выбросами и поглощением), поглощение (количество углерода, поглощенного лесами) и выбросы (количество углерода, высвобожденные в результате нарушений лесного покрова).
GFCF соответствуют рекомендациям МГЭИК и дают представление о том, сколько углерода хранят или высвобождают леса с течением времени.
Данные можно также найти на сайте Global Forest Watch. Информация об обновлениях доступна в блоге.
🌍 Код примера в GEE
#лес #данные #GEE #GHG
Недавнее обновление данных Global Forest Carbon Fluxes (GFCF) позволяет изучать глобальные потоки углерода лесов в период с 2001 по 2023 год. Данные разделены на чистый поток (баланс между выбросами и поглощением), поглощение (количество углерода, поглощенного лесами) и выбросы (количество углерода, высвобожденные в результате нарушений лесного покрова).
GFCF соответствуют рекомендациям МГЭИК и дают представление о том, сколько углерода хранят или высвобождают леса с течением времени.
Данные можно также найти на сайте Global Forest Watch. Информация об обновлениях доступна в блоге.
🌍 Код примера в GEE
#лес #данные #GEE #GHG
Отчет о проверке данных Planet Forest Carbon Diligence
Недавно компания Planet выпустила отчет о проверке своих данных о биомассе лесов, Diligence Validation and Intercomparison Report, в котором приведены сравнения Diligence с восемью независимыми наборами данных о биомассе лесов.
Краткие итоги отчета подвел Крис Андерсон, “главный по лесам” в компании Planet. Крис занимается оценками биомассы леса уже давно. В частности, он является соавтором методики оценки биомассы леса при помощи воздушной лидарной съемки, которая применяется для оценки проектов углеродных компенсаций Verra.
Ключевые тезисы статьи Андерсона:
Основное внимание в отчете уделяется взаимному сопоставлению, а не валидации. Валидация предполагает наличие эталонных данных, как правило, наземных измерений. Вместо этого, почти все источники данных о биомассе леса представляют собой смоделированные оценки, которые содержат погрешности. Поскольку ни один из наборов данных не является эталонным, лучший способ оценить качество продукта с данными о биомассе — сравнить его с другими известными данными о биомассе, показав, где новый продукт работает хорошо, а где плохо.
Производительность модели географически неоднородна. Пользователям не рекомендуется интерпретировать показатели производительности модели как ожидаемую точность для каждого пикселя и предлагается трактовать показатели производительности как среднюю ожидаемую точность глобального набора данных.
Моделировалась высота и сомкнутость крон, используя собственный вариант модели U-Net, разработанный для объединения данных оптических мультиспектральных и радарных данных.
Надземная биомасса моделировалась как функция высоты кроны, сомкнутости, высоты над уровнем моря и географического положения. Для моделирования использовались Boosted regression trees. Такая модель, по мысли авторов, может научиться аппроксимировать аллометрические зависимости способом, чувствительным к нескольким компонентам структуры леса.
Традиционной проблемой является удаление облаков и дымки из мультиспектральных снимков. Был разработан агрессивный алгоритм маскировки облаков, который понижал рейтинг пикселей вблизи краев облаков. В результате пользователи могут видеть циклические буферы (circular buffers) в областях, где пиксели были заполнены наблюдениями более низкого качества. Чтобы смягчить этот эффект, разработчики предоставляют набор данных с оценкой качества пикселей, а также ресурс по дням года, который можно использовать для фильтрации и удаления наблюдений низкого качества или наблюдений из отдаленных периодов года.
“Будучи аспирантом-всезнайкой, я часто ворчал по поводу глобальных данных, которые выглядели точными везде и нигде”, пишет Андерсон. На практике очень сложно создать глобальный продукт с одинаковым качеством из-за сложного взаимодействия пространственных и временных отклонений, различий в измерениях и подходов к оптимизации параметров. Разработчики Diligence подошли к этой проблеме с практическими рекомендациями, предоставив подробный анализ погрешностей модели и указав районы, где точность прогноза самая низкая (например, в азиатских палеотропиках). Одним из способов, которым пользователи могут решить проблему точности, является обучение собственных локальных моделей биомассы, используя данные о высоте и сомкнутости крон, предоставляемые Diligence.
#лес #AGB
Недавно компания Planet выпустила отчет о проверке своих данных о биомассе лесов, Diligence Validation and Intercomparison Report, в котором приведены сравнения Diligence с восемью независимыми наборами данных о биомассе лесов.
Краткие итоги отчета подвел Крис Андерсон, “главный по лесам” в компании Planet. Крис занимается оценками биомассы леса уже давно. В частности, он является соавтором методики оценки биомассы леса при помощи воздушной лидарной съемки, которая применяется для оценки проектов углеродных компенсаций Verra.
Ключевые тезисы статьи Андерсона:
Основное внимание в отчете уделяется взаимному сопоставлению, а не валидации. Валидация предполагает наличие эталонных данных, как правило, наземных измерений. Вместо этого, почти все источники данных о биомассе леса представляют собой смоделированные оценки, которые содержат погрешности. Поскольку ни один из наборов данных не является эталонным, лучший способ оценить качество продукта с данными о биомассе — сравнить его с другими известными данными о биомассе, показав, где новый продукт работает хорошо, а где плохо.
Производительность модели географически неоднородна. Пользователям не рекомендуется интерпретировать показатели производительности модели как ожидаемую точность для каждого пикселя и предлагается трактовать показатели производительности как среднюю ожидаемую точность глобального набора данных.
Моделировалась высота и сомкнутость крон, используя собственный вариант модели U-Net, разработанный для объединения данных оптических мультиспектральных и радарных данных.
Надземная биомасса моделировалась как функция высоты кроны, сомкнутости, высоты над уровнем моря и географического положения. Для моделирования использовались Boosted regression trees. Такая модель, по мысли авторов, может научиться аппроксимировать аллометрические зависимости способом, чувствительным к нескольким компонентам структуры леса.
Традиционной проблемой является удаление облаков и дымки из мультиспектральных снимков. Был разработан агрессивный алгоритм маскировки облаков, который понижал рейтинг пикселей вблизи краев облаков. В результате пользователи могут видеть циклические буферы (circular buffers) в областях, где пиксели были заполнены наблюдениями более низкого качества. Чтобы смягчить этот эффект, разработчики предоставляют набор данных с оценкой качества пикселей, а также ресурс по дням года, который можно использовать для фильтрации и удаления наблюдений низкого качества или наблюдений из отдаленных периодов года.
“Будучи аспирантом-всезнайкой, я часто ворчал по поводу глобальных данных, которые выглядели точными везде и нигде”, пишет Андерсон. На практике очень сложно создать глобальный продукт с одинаковым качеством из-за сложного взаимодействия пространственных и временных отклонений, различий в измерениях и подходов к оптимизации параметров. Разработчики Diligence подошли к этой проблеме с практическими рекомендациями, предоставив подробный анализ погрешностей модели и указав районы, где точность прогноза самая низкая (например, в азиатских палеотропиках). Одним из способов, которым пользователи могут решить проблему точности, является обучение собственных локальных моделей биомассы, используя данные о высоте и сомкнутости крон, предоставляемые Diligence.
#лес #AGB
planet.widen.net
Planet-UserDocumentation-ForestCarbonValidation.pdf
Деревья на возвышенностях являются поглотителями атмосферного метана
Известно, что деревья вносят важный вклад в круговорот углерода на планете, поглощая углекислый газ и преобразуя его в биомассу. Недавняя 📖 работа показала, что деревья на возвышенностях поглощают не только углерод, но и метан.
Метан поглощается не самими деревьями, а колониями метанотрофных бактерий, которые обитают на поверхности коры, извлекают метан из воздуха, окисляют его и превращают в биомассу и углекислый газ. Последний воздействует на климат примерно в 30 раз слабее, чем исходный метан. Особенно быстро метан поглощался корой тропических деревьев, что связано с ускорением метаболизма микробов в теплом и влажном климате.
По оценкам исследователей, кора всех деревьев Земли ежегодно поглощает от 25 до 50 млн тонн метана, что примерно на 10% повышает полезный вклад растительности в борьбу с глобальным потеплением.
#CH4 #климат #лес
Известно, что деревья вносят важный вклад в круговорот углерода на планете, поглощая углекислый газ и преобразуя его в биомассу. Недавняя 📖 работа показала, что деревья на возвышенностях поглощают не только углерод, но и метан.
Метан поглощается не самими деревьями, а колониями метанотрофных бактерий, которые обитают на поверхности коры, извлекают метан из воздуха, окисляют его и превращают в биомассу и углекислый газ. Последний воздействует на климат примерно в 30 раз слабее, чем исходный метан. Особенно быстро метан поглощался корой тропических деревьев, что связано с ускорением метаболизма микробов в теплом и влажном климате.
По оценкам исследователей, кора всех деревьев Земли ежегодно поглощает от 25 до 50 млн тонн метана, что примерно на 10% повышает полезный вклад растительности в борьбу с глобальным потеплением.
#CH4 #климат #лес
Журнал “Наука и технологии Сибири”. Выпуск 13, 2024
🌳 Лесные ресурсы. Риски и решения [скачать]
🔹Экспертные статьи
- Парадигма устойчивого управления лесами: Баланс ресурсных и экосистемных функций
- Климатические рубежи меняют гидрологический статус лесов
🔹Охрана лесов от пожаров
- Усовершенствованная технология мониторинга интенсивности пожаров растительности и оценки пожарных эмиссий дистанционными средствами
- Технология составления карт растительных горючих материалов (карт РГМ)
- Краткий справочник эколого-географических и лесопирологических особенностей лесных районов
- Технология снижения пожароопасности вырубок путем контролируемых выжиганий
- База данных по мировой пилотируемой пожарной авиации
🔹Защита леса
- Технология проведения профилактических мероприятий по защите лесов от сибирского шелкопряда
- Методы и инструменты государственного лесопатологического мониторинга
- Лесопатологический мониторинг в Байкальском регионе: проблемы и пути решения
- Основы технологии защиты сосновых культур от восточного майского хруща
🔹Лесные культуры и селекция
- Уточнение лесосеменного районирования сосны обыкновенной на территории Средней и частично Восточной Сибири
- Применение методов дистанционного зондирования земли для мониторинга лесных селекционно-семеноводческих объектов
- Ускорение лесной селекции как метод интенсификации лесного хозяйства России
- Посадочный материал хвойных пород
- Коллекция эмбриогенных культур лиственницы: состояние и применение для плантационного лесовыращивания
🔹Мониторинг состояния и функционирования лесных экосистем
- Эколого-климатические станции мониторинга потоков климатически активных веществ в рамках реализации государственных
- Мониторинг техногенно-нарушенных земель на основе анализа
- Мобильная обсерватория для маршрутного мониторинга баланса диоксида углерода в наземных экосистемах Приенисейской Сибири
🔹Экосистемные услуги лесов
- Разработка лесохозяйственных и экосистемных мероприятий по повышению средозащитных функций водоохранных лесов Иркутской области на основе комплексной лесоводственно-экологической оценки
🔗 Страница журнала “Наука и технологии Сибири”
#лес #пожары #журнал
🌳 Лесные ресурсы. Риски и решения [скачать]
🔹Экспертные статьи
- Парадигма устойчивого управления лесами: Баланс ресурсных и экосистемных функций
- Климатические рубежи меняют гидрологический статус лесов
🔹Охрана лесов от пожаров
- Усовершенствованная технология мониторинга интенсивности пожаров растительности и оценки пожарных эмиссий дистанционными средствами
- Технология составления карт растительных горючих материалов (карт РГМ)
- Краткий справочник эколого-географических и лесопирологических особенностей лесных районов
- Технология снижения пожароопасности вырубок путем контролируемых выжиганий
- База данных по мировой пилотируемой пожарной авиации
🔹Защита леса
- Технология проведения профилактических мероприятий по защите лесов от сибирского шелкопряда
- Методы и инструменты государственного лесопатологического мониторинга
- Лесопатологический мониторинг в Байкальском регионе: проблемы и пути решения
- Основы технологии защиты сосновых культур от восточного майского хруща
🔹Лесные культуры и селекция
- Уточнение лесосеменного районирования сосны обыкновенной на территории Средней и частично Восточной Сибири
- Применение методов дистанционного зондирования земли для мониторинга лесных селекционно-семеноводческих объектов
- Ускорение лесной селекции как метод интенсификации лесного хозяйства России
- Посадочный материал хвойных пород
- Коллекция эмбриогенных культур лиственницы: состояние и применение для плантационного лесовыращивания
🔹Мониторинг состояния и функционирования лесных экосистем
- Эколого-климатические станции мониторинга потоков климатически активных веществ в рамках реализации государственных
- Мониторинг техногенно-нарушенных земель на основе анализа
- Мобильная обсерватория для маршрутного мониторинга баланса диоксида углерода в наземных экосистемах Приенисейской Сибири
🔹Экосистемные услуги лесов
- Разработка лесохозяйственных и экосистемных мероприятий по повышению средозащитных функций водоохранных лесов Иркутской области на основе комплексной лесоводственно-экологической оценки
🔗 Страница журнала “Наука и технологии Сибири”
#лес #пожары #журнал
Журнал “Наука и технологии Сибири”. Выпуск 14, 2024
🌲 Ресурсы леса. Технологии и материалы [скачать]
🔹Экспертная статья
- Перспективные методы получения востребованных химических веществ и материалов из отходов переработки древесины
🔹Лесохимические продукты для медицины, сельского хозяйства
- Технология переработки отходов лесопиления в комплексное удобрение
- Новые методы получения биологически активных веществ из древесины и коры
🔹Новые вещества и материалы из растительного сырья
- Пиролиз хвои сосны Pinus sylvestris L.: физико-химические показатели торрефикатов и биоугля
- Перспективные пористые материалы из древесной коры
- Многофункциональная целлюлоза из альтернативного ежегодно возобновляемого сырья — мискантуса
- Биодеградируемые и биосовместимые полимеры и сополимеры α-ангеликалактона
- Ученые Института химии твердого тела и механохимии СО РАН предложили состав древесно-стружечных плит с повышенными характеристиками прочности, водо- и огнестойкости.
🔹Методы таксации и стоимостной оценки лесов
- Методика определения восстановительной стоимости зеленых насаждений
- Инновационные методы таксации и мониторинга лесов с использованием лазерного сканирования, аэрокосмической съемки и спутникового геопозиционирования
- Использование материалов наземных GNSS измерений при таксации лесов
🔹Биотехнологии в лесном комплексе
- Инновационные микробиологические технологии для развития лесного комплекса России
- Микроорганизмы как индикаторы состояния лесных почв после рубок и пожаров
🔗 Страница журнала “Наука и технологии Сибири”
#лес #пожары #журнал
🌲 Ресурсы леса. Технологии и материалы [скачать]
🔹Экспертная статья
- Перспективные методы получения востребованных химических веществ и материалов из отходов переработки древесины
🔹Лесохимические продукты для медицины, сельского хозяйства
- Технология переработки отходов лесопиления в комплексное удобрение
- Новые методы получения биологически активных веществ из древесины и коры
🔹Новые вещества и материалы из растительного сырья
- Пиролиз хвои сосны Pinus sylvestris L.: физико-химические показатели торрефикатов и биоугля
- Перспективные пористые материалы из древесной коры
- Многофункциональная целлюлоза из альтернативного ежегодно возобновляемого сырья — мискантуса
- Биодеградируемые и биосовместимые полимеры и сополимеры α-ангеликалактона
- Ученые Института химии твердого тела и механохимии СО РАН предложили состав древесно-стружечных плит с повышенными характеристиками прочности, водо- и огнестойкости.
🔹Методы таксации и стоимостной оценки лесов
- Методика определения восстановительной стоимости зеленых насаждений
- Инновационные методы таксации и мониторинга лесов с использованием лазерного сканирования, аэрокосмической съемки и спутникового геопозиционирования
- Использование материалов наземных GNSS измерений при таксации лесов
🔹Биотехнологии в лесном комплексе
- Инновационные микробиологические технологии для развития лесного комплекса России
- Микроорганизмы как индикаторы состояния лесных почв после рубок и пожаров
🔗 Страница журнала “Наука и технологии Сибири”
#лес #пожары #журнал