This media is not supported in your browser
VIEW IN TELEGRAM
Онлайн-лекции “Изменения климата и углерод в наземных экосистемах: мониторинг и адаптация”
С 17 января по 15 февраля 2024 г. пройдет цикл бесплатных онлайн-лекций “Изменения климата и углерод в наземных экосистемах: мониторинг и адаптация”. Лекции проведут участники проекта “РИТМ углерода” — сотрудники научных институтов и научно-образовательных организаций России.
Слушатели узнают новейшие данные об исследованиях климата и его изменений: какую роль играют леса в регулировании климата, что является природными источниками и хранилищами углерода и парниковых газов, что происходит с почвами и почвенными беспозвоночными животными в условиях меняющегося климата и многое другое.
Для участия нужно зарегистрироваться, заполнив анкету.
Ссылка на подключение придет на почту зарегистрированным участникам за 1–2 дня до начала лекции. Записи лекций будут предоставлены на ограниченный срок только зарегистрированным участникам.
Проект “РИТМ углерода” — очень масштабный и интересный. Его участники — ученые, представляющие несколько десятков научных организаций России — планируют разработать национальную систему мониторинга пулов углерода и потоков парниковых газов, на основе интеграции данных наземных измерений, ДЗЗ и математического моделирования.
С некоторыми работами в рамках проекта мы уже знакомы. В частности, это информационно-аналитическая система “Углерод-Э”, разработанная в ИКИ РАН. Школа-конференция по мониторингу леса на прошлогодней конференции в ИКИ, также связана с работами над проектом “РИТМ углерода”.
Публикации результатов работ по проекту, можно найти (и скачать) на сайте проекта, в разделе “Публикации”.
А вот с чем связано ограничение на предоставление записей лекций — непонятно.
#лес #CO2 #климат #конференции
С 17 января по 15 февраля 2024 г. пройдет цикл бесплатных онлайн-лекций “Изменения климата и углерод в наземных экосистемах: мониторинг и адаптация”. Лекции проведут участники проекта “РИТМ углерода” — сотрудники научных институтов и научно-образовательных организаций России.
Слушатели узнают новейшие данные об исследованиях климата и его изменений: какую роль играют леса в регулировании климата, что является природными источниками и хранилищами углерода и парниковых газов, что происходит с почвами и почвенными беспозвоночными животными в условиях меняющегося климата и многое другое.
Для участия нужно зарегистрироваться, заполнив анкету.
Ссылка на подключение придет на почту зарегистрированным участникам за 1–2 дня до начала лекции. Записи лекций будут предоставлены на ограниченный срок только зарегистрированным участникам.
Проект “РИТМ углерода” — очень масштабный и интересный. Его участники — ученые, представляющие несколько десятков научных организаций России — планируют разработать национальную систему мониторинга пулов углерода и потоков парниковых газов, на основе интеграции данных наземных измерений, ДЗЗ и математического моделирования.
С некоторыми работами в рамках проекта мы уже знакомы. В частности, это информационно-аналитическая система “Углерод-Э”, разработанная в ИКИ РАН. Школа-конференция по мониторингу леса на прошлогодней конференции в ИКИ, также связана с работами над проектом “РИТМ углерода”.
Публикации результатов работ по проекту, можно найти (и скачать) на сайте проекта, в разделе “Публикации”.
А вот с чем связано ограничение на предоставление записей лекций — непонятно.
#лес #CO2 #климат #конференции
На сайте Русского географического общества опубликована статья о проекте “РИТМ углерода”. Участники проекта разрабатывают общероссийскую систему мониторинга пулов углерода и потоков парниковых газов, на основе интеграции данных наземных измерений, ДЗЗ и математического моделирования.
Для достоверного учета углеродного баланса необходимы наземные данные о состоянии леса, которых до сих пор очень не хватает исследователям. Чтобы получить эти данные, участники консорциума создают сеть тестовых полигонов ⬆️ .
Помимо развития сети мониторинга, участники проекта создают единую систему сбора, хранения и анализа данных. Также ученые работают над уточнением площади лесов и других наземных экосистем, обновляют коэффициенты для расчета динамики баланса углерода.
С 17 января по 21 февраля 2024 г. проходит цикл бесплатных онлайн-лекций “Изменения климата и углерод в наземных экосистемах: мониторинг и адаптация”. Лекции проводят участники проекта “РИТМ углерода” — сотрудники научных институтов и научно-образовательных организаций России. Для участия нужно зарегистрироваться, заполнив анкету.
Консорциум “РИТМ углерода” на VK
#лес #климат #конференции
Для достоверного учета углеродного баланса необходимы наземные данные о состоянии леса, которых до сих пор очень не хватает исследователям. Чтобы получить эти данные, участники консорциума создают сеть тестовых полигонов ⬆️ .
Помимо развития сети мониторинга, участники проекта создают единую систему сбора, хранения и анализа данных. Также ученые работают над уточнением площади лесов и других наземных экосистем, обновляют коэффициенты для расчета динамики баланса углерода.
С 17 января по 21 февраля 2024 г. проходит цикл бесплатных онлайн-лекций “Изменения климата и углерод в наземных экосистемах: мониторинг и адаптация”. Лекции проводят участники проекта “РИТМ углерода” — сотрудники научных институтов и научно-образовательных организаций России. Для участия нужно зарегистрироваться, заполнив анкету.
Консорциум “РИТМ углерода” на VK
#лес #климат #конференции
В мае 2024 года планируется запуск двух спутников миссии NASA PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) [ссылка]. Они предназначены для измерения потоков тепловой инфракрасной энергии, излучаемой в полярных регионах планеты. Это позволит повысить точность моделей климата.
Количество тепловой энергии, получаемой планетой от Солнца, в идеале должно компенсироваться энергией, которую планета излучает в космос. Разница между входящей и исходящей энергией определяет температуру Земли и формирует климат. Полярные регионы играют ключевую роль в этом процессе: перемешивание воздуха и воды с помощью погодных и океанических течений перемещает тепловую энергию, полученную в тропиках, к полюсам, где она излучается в виде теплового инфракрасного излучения. Энергию этого излучения и будут измерять спутники PREFIRE (страница миссии).
Результаты наблюдений стратосферной обсерватории SOFIA (Stratospheric Observatory for Infrared Astronomy) впервые показали наличие молекул воды на поверхности астероида [ссылка].
Исследователи обратили внимание на группу из четырех относительно близких астероидов с высоким содержанием силикатов. Два астероида, Ирис и Массалия, однозначно показали наличие на их поверхности признаков воды. Вода может быть связана с минералами на поверхности или соединена с силикатными частицами, подобно тому, как это происходит на лунной поверхности.
Использование машинного обучения для прогнозирования погоды и климата [ссылка]
Учебные пособия по прогнозированию от Climate Change AI показывают как создавать прогнозы для трех типов явлений, охватывающих различные временные и пространственные масштабы: 1) Эль-Ниньо, 2) погода синоптического масштаба (synoptic scale), а также 3) экстремальные события на границе синоптического масштаба.
#климат
Количество тепловой энергии, получаемой планетой от Солнца, в идеале должно компенсироваться энергией, которую планета излучает в космос. Разница между входящей и исходящей энергией определяет температуру Земли и формирует климат. Полярные регионы играют ключевую роль в этом процессе: перемешивание воздуха и воды с помощью погодных и океанических течений перемещает тепловую энергию, полученную в тропиках, к полюсам, где она излучается в виде теплового инфракрасного излучения. Энергию этого излучения и будут измерять спутники PREFIRE (страница миссии).
Результаты наблюдений стратосферной обсерватории SOFIA (Stratospheric Observatory for Infrared Astronomy) впервые показали наличие молекул воды на поверхности астероида [ссылка].
Исследователи обратили внимание на группу из четырех относительно близких астероидов с высоким содержанием силикатов. Два астероида, Ирис и Массалия, однозначно показали наличие на их поверхности признаков воды. Вода может быть связана с минералами на поверхности или соединена с силикатными частицами, подобно тому, как это происходит на лунной поверхности.
Использование машинного обучения для прогнозирования погоды и климата [ссылка]
Учебные пособия по прогнозированию от Climate Change AI показывают как создавать прогнозы для трех типов явлений, охватывающих различные временные и пространственные масштабы: 1) Эль-Ниньо, 2) погода синоптического масштаба (synoptic scale), а также 3) экстремальные события на границе синоптического масштаба.
#климат
⭐️ СТРАНЫ / КОМПАНИИ / СПУТНИКИ
Страны: #австралия #германия #индия #иран #испания #канада #китай #португалия #россия #США #япония и т. п.
Но:
#корея обозначает Северную и Южную Кореи
#РБ — Республика Беларусь
#UK — Великобритания
Компании: #planet #maxar
Спутники: #landsat #sentinel1 #sentinel2
⭐️ ДЗЗ
Методы и приборы
#альтиметр
#гиперспектр — гиперспектральная оптическая съемка
#лидар
#оптика — мультиспектральная оптическая съемка
#радиометр — микроволновой радиометр
#dnb — ночная съёмка (day / night band)
#SIF — солнечно-индуцированная флуоресценция хлорофилла
#ro — радиозатменный метод
#SAR — радарная съемка
#InSAR — радарная интерферометрия
#LST — съемка в тепловом инфракрасном диапазоне
#GNSSR — ГНСС-рефлектометрия
#sigint — радиоэлектронная разведка
Виды орбит: #ГСО — геостационарная, #VLEO — сверхнизкая
#основы — обучающие материалы по ДЗЗ
#обучение курсы, обучающие сервисы и т. п.
#история — в основном, история ДЗЗ
#индексы — спектральные индексы
#комбинация — комбинации каналов
Данные
#данные — коллекции данных ДЗЗ, наземных данных, карты и т.п.
#датасет — набор данных для машинного обучения
Дополнительные хештеги, описывающие данные:
#LULC — Land Use & Land Cover
#осадки
#SST — Sea Surface Temperature
#nrt — (near real time) изображения, получаемые в режиме, близком к реальном времени
#debris — космический мусор
#границы — административные границы
#DEM — цифровая модель рельефа (ЦМР)
#keyhole — рассекреченные снимки разведспутников
Литература, справочная информация
#справка — спектральные каналы, орбиты спутников, поиск данных и т.п.
#обзор
#книга — текст книги прикреплён к сообщению.
#журнал — статьи по ДЗЗ, опубликованные в выпуске журнала
Дополнительные хештеги:
#наблюдение — ресурсы для наблюдения спутников и орбиты спутников
#космодромы
#конференции — анонс конференций/семинаров/школ, посвященных ДЗЗ и анализ их материалов.
#конкурсы — анонс конкурсов/чемпионатов/олимпиад.
#МВК — материалы заседаний Межведомственной комиссии (МВК) по использованию результатов космической деятельности.
#снимки — поучительные (хоть в чем-то интересные) снимки, первые снимки
Программные инструменты / Языки
#нейронки #софт #GEE #R #tool #python #ГИС
#ИИ #FM — Foundation Model (Remote Sensing Foundation Model)
⭐️ ОТРАСЛИ / ТЕМАТИЧЕСКИЕ ЗАДАЧИ
#археология #атмосфера #вода #война #засуха #климат #лед #лес #нефть #океан #оползни #наводнение #пожары #почва #растительность #севморпуть #сельхоз #снег
#AGB — надземная биомасса
#ЧС — мониторинг стихийных бедствий и катастроф
#GHG — парниковые газы
Отдельные газы: #CO2 #NO2
#энергетика — космическая энергетика
#SSA — Space Situational Awareness
Страны: #австралия #германия #индия #иран #испания #канада #китай #португалия #россия #США #япония и т. п.
Но:
#корея обозначает Северную и Южную Кореи
#РБ — Республика Беларусь
#UK — Великобритания
Компании: #planet #maxar
Спутники: #landsat #sentinel1 #sentinel2
⭐️ ДЗЗ
Методы и приборы
#альтиметр
#гиперспектр — гиперспектральная оптическая съемка
#лидар
#оптика — мультиспектральная оптическая съемка
#радиометр — микроволновой радиометр
#dnb — ночная съёмка (day / night band)
#SIF — солнечно-индуцированная флуоресценция хлорофилла
#ro — радиозатменный метод
#SAR — радарная съемка
#InSAR — радарная интерферометрия
#LST — съемка в тепловом инфракрасном диапазоне
#GNSSR — ГНСС-рефлектометрия
#sigint — радиоэлектронная разведка
Виды орбит: #ГСО — геостационарная, #VLEO — сверхнизкая
#основы — обучающие материалы по ДЗЗ
#обучение курсы, обучающие сервисы и т. п.
#история — в основном, история ДЗЗ
#индексы — спектральные индексы
#комбинация — комбинации каналов
Данные
#данные — коллекции данных ДЗЗ, наземных данных, карты и т.п.
#датасет — набор данных для машинного обучения
Дополнительные хештеги, описывающие данные:
#LULC — Land Use & Land Cover
#осадки
#SST — Sea Surface Temperature
#nrt — (near real time) изображения, получаемые в режиме, близком к реальном времени
#debris — космический мусор
#границы — административные границы
#DEM — цифровая модель рельефа (ЦМР)
#keyhole — рассекреченные снимки разведспутников
Литература, справочная информация
#справка — спектральные каналы, орбиты спутников, поиск данных и т.п.
#обзор
#книга — текст книги прикреплён к сообщению.
#журнал — статьи по ДЗЗ, опубликованные в выпуске журнала
Дополнительные хештеги:
#наблюдение — ресурсы для наблюдения спутников и орбиты спутников
#космодромы
#конференции — анонс конференций/семинаров/школ, посвященных ДЗЗ и анализ их материалов.
#конкурсы — анонс конкурсов/чемпионатов/олимпиад.
#МВК — материалы заседаний Межведомственной комиссии (МВК) по использованию результатов космической деятельности.
#снимки — поучительные (хоть в чем-то интересные) снимки, первые снимки
Программные инструменты / Языки
#нейронки #софт #GEE #R #tool #python #ГИС
#ИИ #FM — Foundation Model (Remote Sensing Foundation Model)
⭐️ ОТРАСЛИ / ТЕМАТИЧЕСКИЕ ЗАДАЧИ
#археология #атмосфера #вода #война #засуха #климат #лед #лес #нефть #океан #оползни #наводнение #пожары #почва #растительность #севморпуть #сельхоз #снег
#AGB — надземная биомасса
#ЧС — мониторинг стихийных бедствий и катастроф
#GHG — парниковые газы
Отдельные газы: #CO2 #NO2
#энергетика — космическая энергетика
#SSA — Space Situational Awareness
Опубликован интерактивный климатический атлас Copernicus — Copernicus Interactive Climate Atlas Copernicus (https://atlas.climate.copernicus.eu/) — веб-приложение Службы изменения климата Copernicus (C3S), позволяющее анализировать информацию об изменении климата в прошлом и в будущем на основе данных наблюдений, реанализа и прогнозов изменения климата, представленных в Climate Data Store C3S (CDS).
Атлас облегчает глобальную и региональную оценку прошлых тенденций и будущих изменений ключевых климатических переменных и индексов за различные периоды времени по сценариям выбросов или для различных политически значимых уровней глобального потепления (например, 1,5°, 2°, 3° и 4°).
📖Краткое руководство
📖Руководство пользователя
Набор данных атласа обещают вскоре опубликовать в каталоге Climate and Atmosphere Datastore (CADS).
#данные #климат
Атлас облегчает глобальную и региональную оценку прошлых тенденций и будущих изменений ключевых климатических переменных и индексов за различные периоды времени по сценариям выбросов или для различных политически значимых уровней глобального потепления (например, 1,5°, 2°, 3° и 4°).
📖Краткое руководство
📖Руководство пользователя
Набор данных атласа обещают вскоре опубликовать в каталоге Climate and Atmosphere Datastore (CADS).
#данные #климат
Лесоразведение считается хорошим способом поглощения углекислого газа в атмосфере, способствующим снижению температуры. Однако влияние лесоразведения на климат оказалось сложнее, чем просто поглощение углерода. (Weber et al., 2024) оценили воздействие выращивания лесов на альбедо поверхности и состав атмосферы. Они обнаружили, что сочетание уменьшения отражения поверхности после посадки леса и увеличения аэрозольного рассеивания падающего солнечного света компенсирует около трети охлаждения климата, которое происходит за счет удаления углекислого газа, вызванного лесоразведением.
#лес #климат
#лес #климат
Science
Chemistry-albedo feedbacks offset up to a third of forestation’s CO2 removal benefits
Extensive forestation changes atmospheric composition and surface reflectivity, offsetting a third of the cooling caused by carbon dioxide removal.
Спутниковые наблюдения позволяют изучить влияние судовых выбросов на облака [ссылка]
Облака играют двойственную роль в регулировании температуры Земли. Они могут выступать как в роли щита, отражая поступающий солнечный свет обратно в космос, так и в роли одеяла, удерживая идущее от поверхности тепло. Низко висящие над океаном слоисто-кучевые облака оказывают общее охлаждающее действие, потому что они эффективнее отражают солнечный свет, чем удерживают тепло. Выбросы аэрозолей — крошечных частиц диоксида серы и сажи — от морских судов усиливают охлаждающий эффект слоисто-кучевых облаков и могут иметь далеко идущие последствия для глобального климата.
📸 Выбросы диоксида серы над международными судоходными маршрутами в 2010 году.
#климат #атмосфера
Облака играют двойственную роль в регулировании температуры Земли. Они могут выступать как в роли щита, отражая поступающий солнечный свет обратно в космос, так и в роли одеяла, удерживая идущее от поверхности тепло. Низко висящие над океаном слоисто-кучевые облака оказывают общее охлаждающее действие, потому что они эффективнее отражают солнечный свет, чем удерживают тепло. Выбросы аэрозолей — крошечных частиц диоксида серы и сажи — от морских судов усиливают охлаждающий эффект слоисто-кучевых облаков и могут иметь далеко идущие последствия для глобального климата.
📸 Выбросы диоксида серы над международными судоходными маршрутами в 2010 году.
#климат #атмосфера
Резкий рост поглощения углерода в прибрежных областях мирового океана связан с его биологической фиксацией
Между атмосферой и океаном постоянно происходит обмен углекислым газом. Два основных пути, с помощью которых океан поглощает CO2 — физический (растворение в воде) и биологический (захват живыми организмами, например, водорослями в процессе фотосинтеза). Больше всего углерода, от 190 до 300 миллионов тонн ежегодно, поглощают моря на шельфе и другие прибрежные области, на которые приходится всего 7% площади мирового океана. Концентрация углекислого газа вблизи побережий в течение последних десятилетий непропорционально быстро растет, и причины этого пока до конца не ясны.
Ученые под руководством Морица Матиса (Moritz Mathis) из Центра Гельмгольца “Гереон” исследовали поглощение углекислого газа в прибрежной акватории Мирового океана. Они использовали глобальную биогеохимическую модель океана ICON-Coast с разрешением 20 км, с помощью которой рассчитали потоки углерода между океаном и атмосферой.
Моделирование показало, что за XX век поглощение CO2 прибрежными водами выросло более чем в 2 раза и по темпам опередило открытый океан, причем 59% пришлось на биологическое связывание углерода. Его интенсификацию авторы связали с отступлением морского льда и усилением апвеллинга — подъёма богатых питательными веществами холодных вод из глубин океана к его поверхности. Эти изменения в океанической циркуляции объясняют 36% биологического поглощения углерода.
23% биологической фиксации углерода связали с ростом содержания элементов питания в речном стоке, который произошел из-за антропогенной эвтрофикации, то есть насыщения водоёмов веществами биологического происхождения. Роль физического поглощения CO2 в прибрежных водах постепенно снижалась.
Источник
📸 Синим цветом показаны области, где парциальное давление CO2 изменилось в сторону уменьшения, то есть в сторону большего поглощения и меньшего газовыделения (источник).
#океан #климат
Между атмосферой и океаном постоянно происходит обмен углекислым газом. Два основных пути, с помощью которых океан поглощает CO2 — физический (растворение в воде) и биологический (захват живыми организмами, например, водорослями в процессе фотосинтеза). Больше всего углерода, от 190 до 300 миллионов тонн ежегодно, поглощают моря на шельфе и другие прибрежные области, на которые приходится всего 7% площади мирового океана. Концентрация углекислого газа вблизи побережий в течение последних десятилетий непропорционально быстро растет, и причины этого пока до конца не ясны.
Ученые под руководством Морица Матиса (Moritz Mathis) из Центра Гельмгольца “Гереон” исследовали поглощение углекислого газа в прибрежной акватории Мирового океана. Они использовали глобальную биогеохимическую модель океана ICON-Coast с разрешением 20 км, с помощью которой рассчитали потоки углерода между океаном и атмосферой.
Моделирование показало, что за XX век поглощение CO2 прибрежными водами выросло более чем в 2 раза и по темпам опередило открытый океан, причем 59% пришлось на биологическое связывание углерода. Его интенсификацию авторы связали с отступлением морского льда и усилением апвеллинга — подъёма богатых питательными веществами холодных вод из глубин океана к его поверхности. Эти изменения в океанической циркуляции объясняют 36% биологического поглощения углерода.
23% биологической фиксации углерода связали с ростом содержания элементов питания в речном стоке, который произошел из-за антропогенной эвтрофикации, то есть насыщения водоёмов веществами биологического происхождения. Роль физического поглощения CO2 в прибрежных водах постепенно снижалась.
Источник
📸 Синим цветом показаны области, где парциальное давление CO2 изменилось в сторону уменьшения, то есть в сторону большего поглощения и меньшего газовыделения (источник).
#океан #климат
Запущен первый спутник NASA PREFIRE
25 мая 2024 года в 07:41 UTC с площадки LC-1B космодрома Махиа в Новой Зеландии в рамках миссии “Ready, Aim, PREFIRE” выполнен пуск ракеты-носителя Electron-KS компании Rocket Lab с научно-исследовательским спутником NASA PREFIRE-1 (Polar Radiant Energy in the Far-InfraRed Experiment-1). Пуск прошёл успешно, космический аппарат PREFIRE-1 выведен на околоземную орбиту.
Это — первая из двух последовательных миссий PREFIRE (https://prefire.ssec.wisc.edu), которые должна запустить Rocket Lab в рамках контракта с NASA. Спутники PREFIRE предназначены для измерения потоков тепловой инфракрасной энергии, излучаемой в полярных регионах планеты.
Количество тепловой энергии, получаемой планетой от Солнца, в идеале должно компенсироваться энергией, которую планета излучает в космос. Разница между входящей и исходящей энергией определяет температуру Земли и формирует её климат. Ключевую роль в этом процессе играют полярные регионы планеты. Перемешивание воздуха и воды с помощью атмосферных и океанических течений перемещает тепловую энергию, полученную в тропиках, к полюсам, где она излучается в виде теплового инфракрасного излучения. Его энергию и будут измерять спутники PREFIRE. Таким образом, миссия PREFIRE позволит повысить точность моделей климата.
#США #климат
25 мая 2024 года в 07:41 UTC с площадки LC-1B космодрома Махиа в Новой Зеландии в рамках миссии “Ready, Aim, PREFIRE” выполнен пуск ракеты-носителя Electron-KS компании Rocket Lab с научно-исследовательским спутником NASA PREFIRE-1 (Polar Radiant Energy in the Far-InfraRed Experiment-1). Пуск прошёл успешно, космический аппарат PREFIRE-1 выведен на околоземную орбиту.
Это — первая из двух последовательных миссий PREFIRE (https://prefire.ssec.wisc.edu), которые должна запустить Rocket Lab в рамках контракта с NASA. Спутники PREFIRE предназначены для измерения потоков тепловой инфракрасной энергии, излучаемой в полярных регионах планеты.
Количество тепловой энергии, получаемой планетой от Солнца, в идеале должно компенсироваться энергией, которую планета излучает в космос. Разница между входящей и исходящей энергией определяет температуру Земли и формирует её климат. Ключевую роль в этом процессе играют полярные регионы планеты. Перемешивание воздуха и воды с помощью атмосферных и океанических течений перемещает тепловую энергию, полученную в тропиках, к полюсам, где она излучается в виде теплового инфракрасного излучения. Его энергию и будут измерять спутники PREFIRE. Таким образом, миссия PREFIRE позволит повысить точность моделей климата.
#США #климат