Данные космических лидаров ICESat и ICESat-2
Коллекция NSIDC DAAC ICESat/GLAS содержит данные, полученные лидаром Geoscience Laser Altimeter System (GLAS), работавшего на спутнике Ice, Cloud, and Land Elevation Satellite (ICESat) с 2003 по начало 2010 года. Продукты данных ICESat/GLAS описывают высоты ледяных покровов, ледников и морского льда, а также профили высот облаков и аэрозолей в атмосфере.
Коллекция NSIDC DAAC ICESat-2/ATLAS содержит данные, полученные лидаром Advanced Topographic Laser Altimeter System (ATLAS), установленным на спутнике Ice, Cloud and Land Elevation Satellite-2 (ICESat-2). Продукты данных ICESat-2 позволяют определить высоту морского льда, льда на суше, лесного покрова, высоту воды, городских территорий и т. д. Временное покрытие данных: с конца 2018 года по настоящее время.
Пространственное покрытие обоих видов данных — глобальное.
Данные ICESat и ICESat-2 находятся в NASA’овском тематическом центре обработки и хранения данных ДЗЗ (DAAC) National Snow and Ice Data Center (NSIDC) 1️⃣.
Получить данные ICESat и ICESat-2 можно в:
❄️NSIDC: меню Data/Explore Data, далее — поиском 2️⃣.
❄️NASA Earthdata Search 3️⃣.
❄️OpenAltimetry — это онлайн-платформа для поиска, получения и визуализации данных ICESat и ICESat-2.
Описания алгоритмов получения продуктов ICESat-2 (Algorithm Theoretical Basis Document, ATBD) находятся здесь.
#лидар #данные
Коллекция NSIDC DAAC ICESat/GLAS содержит данные, полученные лидаром Geoscience Laser Altimeter System (GLAS), работавшего на спутнике Ice, Cloud, and Land Elevation Satellite (ICESat) с 2003 по начало 2010 года. Продукты данных ICESat/GLAS описывают высоты ледяных покровов, ледников и морского льда, а также профили высот облаков и аэрозолей в атмосфере.
Коллекция NSIDC DAAC ICESat-2/ATLAS содержит данные, полученные лидаром Advanced Topographic Laser Altimeter System (ATLAS), установленным на спутнике Ice, Cloud and Land Elevation Satellite-2 (ICESat-2). Продукты данных ICESat-2 позволяют определить высоту морского льда, льда на суше, лесного покрова, высоту воды, городских территорий и т. д. Временное покрытие данных: с конца 2018 года по настоящее время.
Пространственное покрытие обоих видов данных — глобальное.
Данные ICESat и ICESat-2 находятся в NASA’овском тематическом центре обработки и хранения данных ДЗЗ (DAAC) National Snow and Ice Data Center (NSIDC) 1️⃣.
Получить данные ICESat и ICESat-2 можно в:
❄️NSIDC: меню Data/Explore Data, далее — поиском 2️⃣.
❄️NASA Earthdata Search 3️⃣.
❄️OpenAltimetry — это онлайн-платформа для поиска, получения и визуализации данных ICESat и ICESat-2.
Описания алгоритмов получения продуктов ICESat-2 (Algorithm Theoretical Basis Document, ATBD) находятся здесь.
#лидар #данные
👍3🔥1
Археологические открытия в Амазонии
Расширение использования воздушной лидарной съемки в последние несколько лет привело к резкому скачку числа археологических находок в Амазонии. Так, в прошлом году в Боливии была обнаружена новая археологическая культура — Касарабе*. Раньше, археологи использовали в этом районе данные оптической и радарной съемки, но эти данные не позволяли заглянуть под полог леса, обладали недостаточным пространственным разрешением и не могли обнаружить некоторые виды объектов, в частности, земляные сооружения. Последние в большом количестве обнаруживают на спутниковых снимках высокого разрешения, но сделать это можно только на безлесных территориях, а таких в Амазонии около 17%. Что же происходит на остальных 83%?
Винисиус Перипато, специалист по дистанционному зондированию из Национального института космических исследований Бразилии, искал земляные сооружения по лидарным данным, собранным за 5 лет наблюдений. Вместе с коллегами, он изучил 5315 кв. км данных, выявив более 900 известных земляных сооружений и обнаружив 24 ранее не зафиксированные постройки. Однако все их усилия походили на поиск иголки в стоге сена, так как покрытая лидарными данными территория охватывала лишь около 0,08% площади Амазонии.
Поэтому, основываясь на новых находках и ранее обнаруженных земляных сооружениях, Перипато с коллегами разработали компьютерную модель для прогноза мест возможного расположения земляных сооружений. Модель учитывала факторы, позволяющие людям выжить в данном регионе, в частности, расстояние до ближайшего источника воды, количество осадков, температуру и тип почвы.
Результаты моделирования показали, что до сих пор не обнаружено от 10272 до 23648 земляных сооружений. Подавляющее большинство из них, скорее всего, расположено в юго-западной части тропического леса.
Если результаты Перипато и его коллег окажутся верны, будет развеян миф о том, что Амазония — огромное пространство, покрытое девственными лесами, которое сформировалось под воздействием природных сил с минимальным участием человека. Напротив, вблизи мест, где были обнаружены земляные сооружения, наблюдается высокая концентрация 53 видов одомашненных деревьев. Среди них какао, бразильский орех, хлебный орех, каучуковое дерево и десятки других. Это свидетельствует о том, что жители региона изменяли природный ландшафт, чтобы иметь постоянный запас продовольствия и полезных материалов. Так что Амазония похожа скорее не на девственный лес, а на заброшенный сад. Следующий вопрос: почему он был заброшен?
Оригинальная статья (Peripato et al., 2023): http://www.science.org/doi/10.1126/science.ade2541
Статью можно свободно взять здесь.
Качественный пересказ результатов статьи в Smithsonian Magazine.
Подробности о модели и использованных данных — в дополнительных материалах к статье.
* Про открытие культуры Касарабе. Оригинальная статья: Prümers, H., Betancourt, C.J., Iriarte, J. _et al._ Lidar reveals pre-Hispanic low-density urbanism in the Bolivian Amazon. Nature 606, 325–328 (2022). https://doi.org/10.1038/s41586-022-04780-4. Качественный пересказ в Smithsonian Magazine.
#лидар #археология
Расширение использования воздушной лидарной съемки в последние несколько лет привело к резкому скачку числа археологических находок в Амазонии. Так, в прошлом году в Боливии была обнаружена новая археологическая культура — Касарабе*. Раньше, археологи использовали в этом районе данные оптической и радарной съемки, но эти данные не позволяли заглянуть под полог леса, обладали недостаточным пространственным разрешением и не могли обнаружить некоторые виды объектов, в частности, земляные сооружения. Последние в большом количестве обнаруживают на спутниковых снимках высокого разрешения, но сделать это можно только на безлесных территориях, а таких в Амазонии около 17%. Что же происходит на остальных 83%?
Винисиус Перипато, специалист по дистанционному зондированию из Национального института космических исследований Бразилии, искал земляные сооружения по лидарным данным, собранным за 5 лет наблюдений. Вместе с коллегами, он изучил 5315 кв. км данных, выявив более 900 известных земляных сооружений и обнаружив 24 ранее не зафиксированные постройки. Однако все их усилия походили на поиск иголки в стоге сена, так как покрытая лидарными данными территория охватывала лишь около 0,08% площади Амазонии.
Поэтому, основываясь на новых находках и ранее обнаруженных земляных сооружениях, Перипато с коллегами разработали компьютерную модель для прогноза мест возможного расположения земляных сооружений. Модель учитывала факторы, позволяющие людям выжить в данном регионе, в частности, расстояние до ближайшего источника воды, количество осадков, температуру и тип почвы.
Результаты моделирования показали, что до сих пор не обнаружено от 10272 до 23648 земляных сооружений. Подавляющее большинство из них, скорее всего, расположено в юго-западной части тропического леса.
Если результаты Перипато и его коллег окажутся верны, будет развеян миф о том, что Амазония — огромное пространство, покрытое девственными лесами, которое сформировалось под воздействием природных сил с минимальным участием человека. Напротив, вблизи мест, где были обнаружены земляные сооружения, наблюдается высокая концентрация 53 видов одомашненных деревьев. Среди них какао, бразильский орех, хлебный орех, каучуковое дерево и десятки других. Это свидетельствует о том, что жители региона изменяли природный ландшафт, чтобы иметь постоянный запас продовольствия и полезных материалов. Так что Амазония похожа скорее не на девственный лес, а на заброшенный сад. Следующий вопрос: почему он был заброшен?
Оригинальная статья (Peripato et al., 2023): http://www.science.org/doi/10.1126/science.ade2541
Статью можно свободно взять здесь.
Качественный пересказ результатов статьи в Smithsonian Magazine.
Подробности о модели и использованных данных — в дополнительных материалах к статье.
* Про открытие культуры Касарабе. Оригинальная статья: Prümers, H., Betancourt, C.J., Iriarte, J. _et al._ Lidar reveals pre-Hispanic low-density urbanism in the Bolivian Amazon. Nature 606, 325–328 (2022). https://doi.org/10.1038/s41586-022-04780-4. Качественный пересказ в Smithsonian Magazine.
#лидар #археология
🔥2❤1
Глобальные карты высоты леса
В (Potapov et al., 2020) описан метод создания глобальной карты высоты лесного полога с пространственным разрешением 30 м, основанной на данных космического лидара GEDI и разновременных данных Landsat.
Для создания карты использованы данные GEDI (апрель–октябрь 2019 года) и данные Landsat за 2019 год. Высота леса моделировалась ансамблем деревьев регрессии с движущимся окном. Калибровка модели осуществлялась локально, с применением метрики GEDI RH95 (относительная высота на уровне 95%). В качестве признаков взяты разновременные данные Landsat, призванные отразить фенологические изменения на поверхности. Поскольку лидар GEDI, работающий на борту МКС, позволяет проводить измерения лишь в полосе широт от 51.6° с.ш. до 51.6° ю.ш., то для создания глобальной карты пришлось экстраполировать построенную модель в бореальные регионы (за пределы диапазона данных GEDI).
🌍 Карту можно получить на GEE: Global Forest Canopy Height from GEDI & Landsat.
Карта подготовлена лабораторией Global Land Analysis and Discovery (GLAD) департамента Географических наук университета штата Мэриленд. GLAD известна своими картами Global Forest Change и данными Harmonized Landsat Sentinel-2.
Следующая глобальная карта высоты лесного полога построена по данным 2020 года с пространственным разрешением 10 м (Lang et al., 2023). Для ее создания использованы данные GEDI, спутниковые снимки Sentinel-2 и ансамбль моделей на основе сверточных нейросетей (CNN). Итоговая модель позволяет получить в любой точке Земли высоту лесного полога и погрешность оценки высоты полога.
Применявшиеся ранее подходы для создания карт высоты полога на основе данных GEDI и Landsat-8, в частности (Potapov et al., 2020) реализовывали попиксельное отображение пространства признаков в высоту полога, без учета свойств окрестности пикселя и текстуры изображения. Применение сверточных нейросетей позволило учесть эти локальные особенности, что является существенной новизной предложенного подхода.
Проблема насыщения при расчете высоты полога, которая приводит к ухудшению точности оценок с увеличением высоты полога, в (Lang et al., 2023) решалась чисто механически — за счет огромного объема обучающих данных. Точность оценки высоты по-прежнему падает с увеличением высоты деревьев, хотя и несколько лучше, чем у более ранних подходов.
Важно, что предложенный (Lang et al., 2023) подход к расчету высоты полога может переноситься на другой временной период. Напомним, что лидар GEDI будет работать на орбите по крайней мере до конца 2024 года.
Исходный код и обученные модели доступны на Github: github.com/langnico/global-canopy-height-model.
🌍 Карта на GEE: ETH Global Sentinel-2 10m Canopy Height (2020).
Код примера
Представляется, что данная карта высот лесного полога является лучшей на сегодняшний день среди глобальных карт с точки зрения пространственного разрешения и точности. В то же время, она не использует лидарные данные для оценки высоты за пределами полосы измерений GEDI, что открывает возможности для ее совершенствования, например, с привлечением данных лидара ICESat-2.
P. Potapov, X. Li, A. Hernandez-Serna, A. Tyukavina, M.C. Hansen, A. Kommareddy, A. Pickens, S. Turubanova, H. Tang, C. E. Silva, J. Armston, R. Dubayah, J. B. Blair, M. Hofton (2020). https://doi.org/10.1016/j.rse.2020.112165
Lang, N., Jetz, W., Schindler, K. _et al._ A high-resolution canopy height model of the Earth. _Nat Ecol Evol_ (2023). https://doi.org/10.1038/s41559-023-02206-6
#лидар #лес #данные #GEE
В (Potapov et al., 2020) описан метод создания глобальной карты высоты лесного полога с пространственным разрешением 30 м, основанной на данных космического лидара GEDI и разновременных данных Landsat.
Для создания карты использованы данные GEDI (апрель–октябрь 2019 года) и данные Landsat за 2019 год. Высота леса моделировалась ансамблем деревьев регрессии с движущимся окном. Калибровка модели осуществлялась локально, с применением метрики GEDI RH95 (относительная высота на уровне 95%). В качестве признаков взяты разновременные данные Landsat, призванные отразить фенологические изменения на поверхности. Поскольку лидар GEDI, работающий на борту МКС, позволяет проводить измерения лишь в полосе широт от 51.6° с.ш. до 51.6° ю.ш., то для создания глобальной карты пришлось экстраполировать построенную модель в бореальные регионы (за пределы диапазона данных GEDI).
🌍 Карту можно получить на GEE: Global Forest Canopy Height from GEDI & Landsat.
Карта подготовлена лабораторией Global Land Analysis and Discovery (GLAD) департамента Географических наук университета штата Мэриленд. GLAD известна своими картами Global Forest Change и данными Harmonized Landsat Sentinel-2.
Следующая глобальная карта высоты лесного полога построена по данным 2020 года с пространственным разрешением 10 м (Lang et al., 2023). Для ее создания использованы данные GEDI, спутниковые снимки Sentinel-2 и ансамбль моделей на основе сверточных нейросетей (CNN). Итоговая модель позволяет получить в любой точке Земли высоту лесного полога и погрешность оценки высоты полога.
Применявшиеся ранее подходы для создания карт высоты полога на основе данных GEDI и Landsat-8, в частности (Potapov et al., 2020) реализовывали попиксельное отображение пространства признаков в высоту полога, без учета свойств окрестности пикселя и текстуры изображения. Применение сверточных нейросетей позволило учесть эти локальные особенности, что является существенной новизной предложенного подхода.
Проблема насыщения при расчете высоты полога, которая приводит к ухудшению точности оценок с увеличением высоты полога, в (Lang et al., 2023) решалась чисто механически — за счет огромного объема обучающих данных. Точность оценки высоты по-прежнему падает с увеличением высоты деревьев, хотя и несколько лучше, чем у более ранних подходов.
Важно, что предложенный (Lang et al., 2023) подход к расчету высоты полога может переноситься на другой временной период. Напомним, что лидар GEDI будет работать на орбите по крайней мере до конца 2024 года.
Исходный код и обученные модели доступны на Github: github.com/langnico/global-canopy-height-model.
🌍 Карта на GEE: ETH Global Sentinel-2 10m Canopy Height (2020).
Код примера
Представляется, что данная карта высот лесного полога является лучшей на сегодняшний день среди глобальных карт с точки зрения пространственного разрешения и точности. В то же время, она не использует лидарные данные для оценки высоты за пределами полосы измерений GEDI, что открывает возможности для ее совершенствования, например, с привлечением данных лидара ICESat-2.
P. Potapov, X. Li, A. Hernandez-Serna, A. Tyukavina, M.C. Hansen, A. Kommareddy, A. Pickens, S. Turubanova, H. Tang, C. E. Silva, J. Armston, R. Dubayah, J. B. Blair, M. Hofton (2020). https://doi.org/10.1016/j.rse.2020.112165
Lang, N., Jetz, W., Schindler, K. _et al._ A high-resolution canopy height model of the Earth. _Nat Ecol Evol_ (2023). https://doi.org/10.1038/s41559-023-02206-6
#лидар #лес #данные #GEE
❤2👍1
Открытые данные авиационных лидаров
1. NASA Land, Vegetation, and Ice Sensor (LVIS): Blair, J. Processing of NASA LVIS elevation and canopy (LGE, LCE and LGW) data products, version 1.0. NASA https://lvis.gsfc.nasa.gov (2018).
2. Коллекция лидарных измерений высоты лесного полога, выполненных в Европе: Liu, S., Brandt, M., Nord-Larsen, T., Chave, J. et al. (2023). The overlooked contribution of trees outside forests to tree cover and woody biomass across Europe. Science Advances, 9(37). https://doi.org/10.1126/sciadv.adh4097
Растровые данные о высоте лесного полога с пространственным разрешением 10 м, извлеченные из указанных источников находятся в:
✈️ Lang, N., Jetz, W., Schindler, K., & Wegner, J. D. (2023). A high-resolution canopy height model of the Earth. Nature Ecology & Evolution, 1-12, https://doi.org/10.1038/s41559-023-02206-6
Land, Vegetation, and Ice Sensor (LVIS) — это авиационный лазерный альтиметр с широкой полосой обзора, которым NASA собирает данные о рельефе и трехмерной структуре поверхности.
LVIS использует лазер с длиной волны 1064 нм и 3 детектора, с помощью которых оцифровывается вся временнАя история исходящих и возвращающихся импульсов. Вместе с информацией о положении и ориентации самолета, это позволяет получать топографические карты с дециметровой точностью, а также измерять высоту и структуру объектов на поверхности, например, растительности и льда.
LVIS обычно работает на высоте 10 км над землей, создавая полосу данных шириной 2 км со следами* (footprint) диаметром 7–10 м. Возможны конфигурации LVIS с меньшим или большим диаметрами следа. При этом общая ширина полосы данных зависит от высоты полета и диаметра следа.
Данные LVIS уровней L1B и L2 (2017 г. – н. в.) хранятся здесь.
На рисунке показана схема сканирования LVIS: в полосе захвата шириной 2 км насчитывается около 100 следов лучей лидара. Цвет характеризует высоту поверхности (синий — низкая, желтый/белый — высокая). Волнистость полосы является следствием крена самолета.
#лидар #данные
1. NASA Land, Vegetation, and Ice Sensor (LVIS): Blair, J. Processing of NASA LVIS elevation and canopy (LGE, LCE and LGW) data products, version 1.0. NASA https://lvis.gsfc.nasa.gov (2018).
2. Коллекция лидарных измерений высоты лесного полога, выполненных в Европе: Liu, S., Brandt, M., Nord-Larsen, T., Chave, J. et al. (2023). The overlooked contribution of trees outside forests to tree cover and woody biomass across Europe. Science Advances, 9(37). https://doi.org/10.1126/sciadv.adh4097
Растровые данные о высоте лесного полога с пространственным разрешением 10 м, извлеченные из указанных источников находятся в:
✈️ Lang, N., Jetz, W., Schindler, K., & Wegner, J. D. (2023). A high-resolution canopy height model of the Earth. Nature Ecology & Evolution, 1-12, https://doi.org/10.1038/s41559-023-02206-6
Land, Vegetation, and Ice Sensor (LVIS) — это авиационный лазерный альтиметр с широкой полосой обзора, которым NASA собирает данные о рельефе и трехмерной структуре поверхности.
LVIS использует лазер с длиной волны 1064 нм и 3 детектора, с помощью которых оцифровывается вся временнАя история исходящих и возвращающихся импульсов. Вместе с информацией о положении и ориентации самолета, это позволяет получать топографические карты с дециметровой точностью, а также измерять высоту и структуру объектов на поверхности, например, растительности и льда.
LVIS обычно работает на высоте 10 км над землей, создавая полосу данных шириной 2 км со следами* (footprint) диаметром 7–10 м. Возможны конфигурации LVIS с меньшим или большим диаметрами следа. При этом общая ширина полосы данных зависит от высоты полета и диаметра следа.
Данные LVIS уровней L1B и L2 (2017 г. – н. в.) хранятся здесь.
На рисунке показана схема сканирования LVIS: в полосе захвата шириной 2 км насчитывается около 100 следов лучей лидара. Цвет характеризует высоту поверхности (синий — низкая, желтый/белый — высокая). Волнистость полосы является следствием крена самолета.
#лидар #данные
👍5🔥3
Обзор применения лидаров для оценки биомассы леса
Borsah, A.A.; Nazeer, M.; Wong, M.S. LIDAR-Based Forest Biomass Remote Sensing: A Review of Metrics, Methods, and Assessment Criteria for the Selection of Allometric Equations. Forests, 2023, 14, 2095. https://doi.org/10.3390/f14102095
За последние двадцать лет лидары существенно расширили наши возможности мониторинга биомассы леса. Лидары позволяют измерять множество характеристик лесных насаждений: высоту, базальную площадь, вертикальный профиль, размер кроны, объем ствола и др. Они способны определять биомассу в районах с высокой плотностью леса и не имеют проблем с насыщением. Эффект насыщения состоит в том, что показания сенсоров ДЗЗ в какой-то момент перестают реагировать на увеличение биомассы леса. Этот эффект проявляется у пассивных оптических сенсоров и, отчасти, у радаров. Пример насыщения у радара: 1️⃣ (источник).
С помощью лидаров проводятся дистанционные измерения с наземных, воздушных и космических платформ 2️⃣. Как следует из обзора, в большинстве исследований надземной биомассы леса применялись данные авиационных лидаров, полученные для небольших участков леса.
В разделе "LIDAR Technology for Biomass Studies" есть любопытные соображения по выбору типа лидара для оценки биомассы.
В большинстве исследований для определения надземной биомассы леса применялись не методы машинного обучения, а параметрические модели. Это когда структура модели задается заранее, и в ходе обучения подгоняются только коэффициенты модели. Наиболее влиятельными признаками в моделях являются средняя высота лесного полога (mean canopy height) и средняя квадратичная высота (quadratic mean height).
Авторы обзора изучили публикации по теме с 1999 по 2023 год. На наш взгляд, в обзоре нет удивительных открытий, но он аккуратно фиксирует современное состояние проблемы. Иногда несколько занудно. Например, сообщается, что точность моделей обычно оценивается попиксельно, при помощи коэффициента детерминации и среднеквадратичной ошибки…
#лидар #AGB #лес
Borsah, A.A.; Nazeer, M.; Wong, M.S. LIDAR-Based Forest Biomass Remote Sensing: A Review of Metrics, Methods, and Assessment Criteria for the Selection of Allometric Equations. Forests, 2023, 14, 2095. https://doi.org/10.3390/f14102095
За последние двадцать лет лидары существенно расширили наши возможности мониторинга биомассы леса. Лидары позволяют измерять множество характеристик лесных насаждений: высоту, базальную площадь, вертикальный профиль, размер кроны, объем ствола и др. Они способны определять биомассу в районах с высокой плотностью леса и не имеют проблем с насыщением. Эффект насыщения состоит в том, что показания сенсоров ДЗЗ в какой-то момент перестают реагировать на увеличение биомассы леса. Этот эффект проявляется у пассивных оптических сенсоров и, отчасти, у радаров. Пример насыщения у радара: 1️⃣ (источник).
С помощью лидаров проводятся дистанционные измерения с наземных, воздушных и космических платформ 2️⃣. Как следует из обзора, в большинстве исследований надземной биомассы леса применялись данные авиационных лидаров, полученные для небольших участков леса.
В разделе "LIDAR Technology for Biomass Studies" есть любопытные соображения по выбору типа лидара для оценки биомассы.
В большинстве исследований для определения надземной биомассы леса применялись не методы машинного обучения, а параметрические модели. Это когда структура модели задается заранее, и в ходе обучения подгоняются только коэффициенты модели. Наиболее влиятельными признаками в моделях являются средняя высота лесного полога (mean canopy height) и средняя квадратичная высота (quadratic mean height).
Авторы обзора изучили публикации по теме с 1999 по 2023 год. На наш взгляд, в обзоре нет удивительных открытий, но он аккуратно фиксирует современное состояние проблемы. Иногда несколько занудно. Например, сообщается, что точность моделей обычно оценивается попиксельно, при помощи коэффициента детерминации и среднеквадратичной ошибки…
#лидар #AGB #лес
👍3🔥2
⭐️ СТРАНЫ / КОМПАНИИ / СПУТНИКИ
Страны: #австралия #германия #индия #иран #испания #канада #китай #португалия #россия #США #япония и т. п.
Но:
#корея обозначает Северную и Южную Кореи
#РБ — Республика Беларусь
#UK — Великобритания
Компании: #planet #maxar
Спутники: #landsat #sentinel1 #sentinel2
⭐️ ДЗЗ
Методы и приборы
#альтиметр
#гиперспектр — гиперспектральная оптическая съемка
#лидар
#оптика — мультиспектральная оптическая съемка
#радиометр — микроволновой радиометр
#dnb — ночная съёмка (day / night band)
#SIF — солнечно-индуцированная флуоресценция хлорофилла
#ro — радиозатменный метод
#SAR — радарная съемка
#InSAR — радарная интерферометрия
#LST — съемка в тепловом инфракрасном диапазоне
#GNSSR — ГНСС-рефлектометрия
#sigint — радиоэлектронная разведка
Виды орбит: #ГСО — геостационарная, #VLEO — сверхнизкая
#основы — обучающие материалы по ДЗЗ
#обучение курсы, обучающие сервисы и т. п.
#история — в основном, история ДЗЗ
#индексы — спектральные индексы
#комбинация — комбинации каналов
Данные
#данные — коллекции данных ДЗЗ, наземных данных, карты и т.п.
#датасет — набор данных для машинного обучения
Дополнительные хештеги, описывающие данные:
#LULC — Land Use & Land Cover
#осадки
#SST — Sea Surface Temperature
#nrt — (near real time) изображения, получаемые в режиме, близком к реальном времени
#debris — космический мусор
#границы — административные границы
#DEM — цифровая модель рельефа (ЦМР)
#keyhole — рассекреченные снимки разведспутников
Литература, справочная информация
#справка — спектральные каналы, орбиты спутников, поиск данных и т.п.
#обзор
#книга — текст книги прикреплён к сообщению.
#журнал — статьи по ДЗЗ, опубликованные в выпуске журнала
Дополнительные хештеги:
#наблюдение — ресурсы для наблюдения спутников и орбиты спутников
#космодромы
#конференции — анонс конференций/семинаров/школ, посвященных ДЗЗ и анализ их материалов.
#конкурсы — анонс конкурсов/чемпионатов/олимпиад.
#МВК — материалы заседаний Межведомственной комиссии (МВК) по использованию результатов космической деятельности.
#снимки — поучительные (хоть в чем-то интересные) снимки, первые снимки
Программные инструменты / Языки
#нейронки #софт #GEE #R #tool #python #ГИС
#ИИ #FM — Foundation Model (Remote Sensing Foundation Model)
⭐️ ОТРАСЛИ / ТЕМАТИЧЕСКИЕ ЗАДАЧИ
#археология #атмосфера #вода #война #засуха #климат #лед #лес #нефть #океан #оползни #наводнение #пожары #почва #растительность #севморпуть #сельхоз #снег
#AGB — надземная биомасса
#ЧС — мониторинг стихийных бедствий и катастроф
#GHG — парниковые газы
Отдельные газы: #CO2 #NO2
#энергетика — космическая энергетика
#SSA — Space Situational Awareness
Страны: #австралия #германия #индия #иран #испания #канада #китай #португалия #россия #США #япония и т. п.
Но:
#корея обозначает Северную и Южную Кореи
#РБ — Республика Беларусь
#UK — Великобритания
Компании: #planet #maxar
Спутники: #landsat #sentinel1 #sentinel2
⭐️ ДЗЗ
Методы и приборы
#альтиметр
#гиперспектр — гиперспектральная оптическая съемка
#лидар
#оптика — мультиспектральная оптическая съемка
#радиометр — микроволновой радиометр
#dnb — ночная съёмка (day / night band)
#SIF — солнечно-индуцированная флуоресценция хлорофилла
#ro — радиозатменный метод
#SAR — радарная съемка
#InSAR — радарная интерферометрия
#LST — съемка в тепловом инфракрасном диапазоне
#GNSSR — ГНСС-рефлектометрия
#sigint — радиоэлектронная разведка
Виды орбит: #ГСО — геостационарная, #VLEO — сверхнизкая
#основы — обучающие материалы по ДЗЗ
#обучение курсы, обучающие сервисы и т. п.
#история — в основном, история ДЗЗ
#индексы — спектральные индексы
#комбинация — комбинации каналов
Данные
#данные — коллекции данных ДЗЗ, наземных данных, карты и т.п.
#датасет — набор данных для машинного обучения
Дополнительные хештеги, описывающие данные:
#LULC — Land Use & Land Cover
#осадки
#SST — Sea Surface Temperature
#nrt — (near real time) изображения, получаемые в режиме, близком к реальном времени
#debris — космический мусор
#границы — административные границы
#DEM — цифровая модель рельефа (ЦМР)
#keyhole — рассекреченные снимки разведспутников
Литература, справочная информация
#справка — спектральные каналы, орбиты спутников, поиск данных и т.п.
#обзор
#книга — текст книги прикреплён к сообщению.
#журнал — статьи по ДЗЗ, опубликованные в выпуске журнала
Дополнительные хештеги:
#наблюдение — ресурсы для наблюдения спутников и орбиты спутников
#космодромы
#конференции — анонс конференций/семинаров/школ, посвященных ДЗЗ и анализ их материалов.
#конкурсы — анонс конкурсов/чемпионатов/олимпиад.
#МВК — материалы заседаний Межведомственной комиссии (МВК) по использованию результатов космической деятельности.
#снимки — поучительные (хоть в чем-то интересные) снимки, первые снимки
Программные инструменты / Языки
#нейронки #софт #GEE #R #tool #python #ГИС
#ИИ #FM — Foundation Model (Remote Sensing Foundation Model)
⭐️ ОТРАСЛИ / ТЕМАТИЧЕСКИЕ ЗАДАЧИ
#археология #атмосфера #вода #война #засуха #климат #лед #лес #нефть #океан #оползни #наводнение #пожары #почва #растительность #севморпуть #сельхоз #снег
#AGB — надземная биомасса
#ЧС — мониторинг стихийных бедствий и катастроф
#GHG — парниковые газы
Отдельные газы: #CO2 #NO2
#энергетика — космическая энергетика
#SSA — Space Situational Awareness
🔥4👍2❤1