Дистанционное зондирование Земли (ДЗЗ)
Термины и сокращения, #термины
Организации: NASA, NOAA, DARPA и другие
Спектральные каналы Landsat 8/9 и Sentinel-2, MODIS
Спектральные сигнатуры
📚Основы дистанционного зондирования Земли, #основы
#индексы (спектральные, вегетационные, ...)
#комбинация каналов
#история ДЗЗ
Научно-популярные лекции по ДЗЗ
Лекции школы молодых учёных (ИКИ РАН): 2015-2017, 2018-2019, 2020-2021, 2022-2023
Рекомендованные практики мониторинга ЧС (UN-SPIDER)
Космическое образование в России: раз, два.
Поиск / Справочная информация
Общий каталог искусственных космических объектов (GCAT)
Спутники и съемочная аппаратура
Российские спутники ДЗЗ, #МВК
Информация о запусках
Орбиты спутников
#наблюдение за спутниками
Где взять научную литературу #книга #журнал
ИИ-поиск, патентный поиск, поиск наборов данных
#справка
Google Earth Engine
📚Учебник по Google Earth Engine
🌍 Список всех данных Google Earth Engine
Проекты и примеры кода
Учебные ресурсы
Полезные ссылки
#GEE
📚🖥 Работа с пространственными данными в R
Спутниковые и другие данные — #данные
Бесплатные спутниковые снимки, в т.ч. высокого разрешения
🛰 Sentinel-1, Радары на GEE
🛰 Sentinel-2
🛰 Landsat Collection 2, снимки Landsat
🛰 CBERS
🛰🛰 Спутники серий "Электро-Л" и "Арктика-М"
🛰 Гиперспектральные данные Wyvern
Открытые векторные данные
#LULC — Land Use & Land Cover
#DEM
#границы
#nrt — Земля из космоса в реальном времени
Международная хартия по космосу и крупным катастрофам: список активаций
Погода: фактическая, реанализ, прогнозы
#ЧС
Тематические задачи
#лес, #AGB (надземная биомасса)
#пожары
#вода — водные объекты, наводнения, качество воды
#лед
#погода, #климат
#атмосфера
#археология
#сельхоз
#LST — температура земной поверхности
Типы данных
#гиперспектр
#SAR #InSAR
#лидар
#LST
#GNSSR
#ro
#SIF
Конференции, школы, семинары
#конференции
Конкурсы и чемпионаты
#конкурс
Новости военного ДЗЗ
#война #sigint #SSA
⭐️Все хештеги
Термины и сокращения, #термины
Организации: NASA, NOAA, DARPA и другие
Спектральные каналы Landsat 8/9 и Sentinel-2, MODIS
Спектральные сигнатуры
📚Основы дистанционного зондирования Земли, #основы
#индексы (спектральные, вегетационные, ...)
#комбинация каналов
#история ДЗЗ
Научно-популярные лекции по ДЗЗ
Лекции школы молодых учёных (ИКИ РАН): 2015-2017, 2018-2019, 2020-2021, 2022-2023
Рекомендованные практики мониторинга ЧС (UN-SPIDER)
Космическое образование в России: раз, два.
Поиск / Справочная информация
Общий каталог искусственных космических объектов (GCAT)
Спутники и съемочная аппаратура
Российские спутники ДЗЗ, #МВК
Информация о запусках
Орбиты спутников
#наблюдение за спутниками
Где взять научную литературу #книга #журнал
ИИ-поиск, патентный поиск, поиск наборов данных
#справка
Google Earth Engine
📚Учебник по Google Earth Engine
🌍 Список всех данных Google Earth Engine
Проекты и примеры кода
Учебные ресурсы
Полезные ссылки
#GEE
📚🖥 Работа с пространственными данными в R
Спутниковые и другие данные — #данные
Бесплатные спутниковые снимки, в т.ч. высокого разрешения
🛰 Sentinel-1, Радары на GEE
🛰 Sentinel-2
🛰 Landsat Collection 2, снимки Landsat
🛰 CBERS
🛰🛰 Спутники серий "Электро-Л" и "Арктика-М"
🛰 Гиперспектральные данные Wyvern
Открытые векторные данные
#LULC — Land Use & Land Cover
#DEM
#границы
#nrt — Земля из космоса в реальном времени
Международная хартия по космосу и крупным катастрофам: список активаций
Погода: фактическая, реанализ, прогнозы
#ЧС
Тематические задачи
#лес, #AGB (надземная биомасса)
#пожары
#вода — водные объекты, наводнения, качество воды
#лед
#погода, #климат
#атмосфера
#археология
#сельхоз
#LST — температура земной поверхности
Типы данных
#гиперспектр
#SAR #InSAR
#лидар
#LST
#GNSSR
#ro
#SIF
Конференции, школы, семинары
#конференции
Конкурсы и чемпионаты
#конкурс
Новости военного ДЗЗ
#война #sigint #SSA
⭐️Все хештеги
Радиозатменный метод измерения параметров атмосферы
Радиозатменные исследования атмосферы Земли реализуются с помощью спутника-излучателя из действующих группировок глобальных навигационных спутниковых систем (ГНСС), и спутника-приемника сигналов, находящегося на низкой околоземной орбите. Метод основан на явлении атмосферной рефракции: когда электромагнитное излучение проходит через атмосферу, оно преломляется (искривляется). Величина преломления зависит от градиента показателя преломления по нормали к трассе, который, в свою очередь, зависит от градиента плотности атмосферы.
При заходе спутника-приемника в зону тени Земли относительно навигационного спутника, перигей трассы радиосигнала проходит через ионосферу и атмосферу 1️⃣. Тем не менее, благодаря преломлению радиосигнала в атмосфере, спутник-приемник способен принять сигнал со спутника ГНСС. Каждое такое измерение содержит интегральную информацию о показателе преломления атмосферы вдоль трассы сигнала. Поскольку в этот момент приемник находится в зоне тени Земли, или в зоне радиозатмения (radio occultation), метод измерений назван радиозатменным. А так как в качестве передатчиков используются спутники ГНСС, то полное названия метода — ГНСС-радиозатменный метод (Global Navigation Satellite System – Radio Occultation, GNSS-RO).
Но вернемся к показателю преломления атмосферы, измеренному радиозатменным методом. Показатель преломления является функцией от метеорологических параметров: температуры, давления и влажности атмосферы. Относительное положение спутника ГНСС и спутника-приемника меняется со временем, что позволяет осуществлять вертикальное сканирование атмосферы. При достаточном количестве измерений можно восстановить температуру, давление и влажность атмосферы в плоскости орбиты. Кроме того, радиозатменный метод позволяет восстановить значение электронной плотности в ионосфере.
Методы восстановления параметров атмосферы по радиозатменным измерениям опираются на довольно сложную математику. По теории метода на русском языке есть книги:
📖Яковлев О. И., Павельев А. Г., Матюгов С. С. Спутниковый мониторинг Земли: Радиозатменный мониторинг атмосферы и ионосферы. М.: Книжный дом “ЛИБРОКОМ”, 2010.
📖Горбунов М. Е. Физические и математические принципы спутникового радиозатменного зондирования атмосферы Земли. М.: ГЕОС, 2019. URL: https://www.rfbr.ru/rffi/ru/books/o_2088668
Таким образом, ГНСС-радиозатменный метод позволяет получить вертикальные профили температуры, давления и влажности атмосферы, а также электронной плотности ионосферы.
#ro #основы
Радиозатменные исследования атмосферы Земли реализуются с помощью спутника-излучателя из действующих группировок глобальных навигационных спутниковых систем (ГНСС), и спутника-приемника сигналов, находящегося на низкой околоземной орбите. Метод основан на явлении атмосферной рефракции: когда электромагнитное излучение проходит через атмосферу, оно преломляется (искривляется). Величина преломления зависит от градиента показателя преломления по нормали к трассе, который, в свою очередь, зависит от градиента плотности атмосферы.
При заходе спутника-приемника в зону тени Земли относительно навигационного спутника, перигей трассы радиосигнала проходит через ионосферу и атмосферу 1️⃣. Тем не менее, благодаря преломлению радиосигнала в атмосфере, спутник-приемник способен принять сигнал со спутника ГНСС. Каждое такое измерение содержит интегральную информацию о показателе преломления атмосферы вдоль трассы сигнала. Поскольку в этот момент приемник находится в зоне тени Земли, или в зоне радиозатмения (radio occultation), метод измерений назван радиозатменным. А так как в качестве передатчиков используются спутники ГНСС, то полное названия метода — ГНСС-радиозатменный метод (Global Navigation Satellite System – Radio Occultation, GNSS-RO).
Но вернемся к показателю преломления атмосферы, измеренному радиозатменным методом. Показатель преломления является функцией от метеорологических параметров: температуры, давления и влажности атмосферы. Относительное положение спутника ГНСС и спутника-приемника меняется со временем, что позволяет осуществлять вертикальное сканирование атмосферы. При достаточном количестве измерений можно восстановить температуру, давление и влажность атмосферы в плоскости орбиты. Кроме того, радиозатменный метод позволяет восстановить значение электронной плотности в ионосфере.
Методы восстановления параметров атмосферы по радиозатменным измерениям опираются на довольно сложную математику. По теории метода на русском языке есть книги:
📖Яковлев О. И., Павельев А. Г., Матюгов С. С. Спутниковый мониторинг Земли: Радиозатменный мониторинг атмосферы и ионосферы. М.: Книжный дом “ЛИБРОКОМ”, 2010.
📖Горбунов М. Е. Физические и математические принципы спутникового радиозатменного зондирования атмосферы Земли. М.: ГЕОС, 2019. URL: https://www.rfbr.ru/rffi/ru/books/o_2088668
Таким образом, ГНСС-радиозатменный метод позволяет получить вертикальные профили температуры, давления и влажности атмосферы, а также электронной плотности ионосферы.
#ro #основы
Несколько слов по истории радиозатменного метода. Процитируем книгу М. Е. Горбунова:
”Идея спутникового зондирования атмосферы Земли в радиодиапазоне была выдвинута еще в середине 1960-х годов. Тогда было предложено запустить систему спутников, оснащенных передатчиками и приемниками радиоволн, на синхронной орбите. При этом предполагалось измерять амплитуду и фазу радиоволн, прошедших вдоль лимбовой трассы, т.е. трассы космос – атмосфера – космос. Каждое такое измерение содержит интегральную информацию о показателе преломления атмосферы вдоль трассы. Показатель преломления, в свою очередь, является функцией от метеопараметров: температуры, давления и удельной влажности. При достаточном количестве измерений можно сформулировать задачу томографического восстановления метеопараметров атмосферы в плоскости орбиты. С современной точки зрения, такая схема выглядит утопично, поскольку для достижения разумной точности и пространственного разрешения восстановления метеополей потребовалось бы слишком много спутников. Поддержание синхронных орбит такой системы практически нереализуемо. При этом зондируется лишь одно сечении атмосферы.
В конце 1960-х годов была предложена простая и реалистичная схема зондирования атмосферы, легшая в дальнейшем в основу радиозатменного метода. В рамках этой схемы достаточно двух спутников, один из которых оснащен передатчиком, а другой - приемником. При этом спутники движутся так, что радиолуч, соединяющий их, погружается в атмосферу, т.е. с точки зрения приемника происходит радиозаход передатчика за лимб планеты. Измерений амплитуды или фазы, полученных в течение такого радиозатменного эксперимента. достаточно для того, чтобы восстановить вертикальный профиль показателя преломления. Требуется лишь, чтобы горизонтальные градиенты показателя преломления были достаточно малы, и атмосферу можно было считать локально сферически-слоистой. Начиная с конца 1960-х годов, эта схема с успехом применялась для зондирования планетных атмосфер.
Первые попытки применения радиозатменного метода для зондирования атмосферы Земли относятся к 1970-м и 1980-м годам. Однако требования к точности зондирования атмосферы Земли значительно выше требований к точности зондирования планетных атмосфер. Стабильность передатчиков, использовавшихся до середины 1990-х годов, была недостаточна для достижения требуемой точности определения параметров атмосферы Земли.
Появление системы глобальной спутниковой навигации GPS, включающей спутники с высокостабильными передатчиками, изменило ситуацию. Достоинства метода зондирования атмосферы Земли при помощи сигналов системы GPS состоят в следующем: 1) стабильность калибровок измерительной аппаратуры обеспечивается наличием атомных часов на корреспондирующих спутниках, 2) низкая стоимость приемника, 3) всепогодность метода (в частности, нечувствительность к облачности) и 4) глобальное покрытие (характерное для всех спутниковых методов)“.
Недостатком радиозатменного метода является низкое горизонтальное разрешение, характерное для всех лимбовых методов.
#ro #история
”Идея спутникового зондирования атмосферы Земли в радиодиапазоне была выдвинута еще в середине 1960-х годов. Тогда было предложено запустить систему спутников, оснащенных передатчиками и приемниками радиоволн, на синхронной орбите. При этом предполагалось измерять амплитуду и фазу радиоволн, прошедших вдоль лимбовой трассы, т.е. трассы космос – атмосфера – космос. Каждое такое измерение содержит интегральную информацию о показателе преломления атмосферы вдоль трассы. Показатель преломления, в свою очередь, является функцией от метеопараметров: температуры, давления и удельной влажности. При достаточном количестве измерений можно сформулировать задачу томографического восстановления метеопараметров атмосферы в плоскости орбиты. С современной точки зрения, такая схема выглядит утопично, поскольку для достижения разумной точности и пространственного разрешения восстановления метеополей потребовалось бы слишком много спутников. Поддержание синхронных орбит такой системы практически нереализуемо. При этом зондируется лишь одно сечении атмосферы.
В конце 1960-х годов была предложена простая и реалистичная схема зондирования атмосферы, легшая в дальнейшем в основу радиозатменного метода. В рамках этой схемы достаточно двух спутников, один из которых оснащен передатчиком, а другой - приемником. При этом спутники движутся так, что радиолуч, соединяющий их, погружается в атмосферу, т.е. с точки зрения приемника происходит радиозаход передатчика за лимб планеты. Измерений амплитуды или фазы, полученных в течение такого радиозатменного эксперимента. достаточно для того, чтобы восстановить вертикальный профиль показателя преломления. Требуется лишь, чтобы горизонтальные градиенты показателя преломления были достаточно малы, и атмосферу можно было считать локально сферически-слоистой. Начиная с конца 1960-х годов, эта схема с успехом применялась для зондирования планетных атмосфер.
Первые попытки применения радиозатменного метода для зондирования атмосферы Земли относятся к 1970-м и 1980-м годам. Однако требования к точности зондирования атмосферы Земли значительно выше требований к точности зондирования планетных атмосфер. Стабильность передатчиков, использовавшихся до середины 1990-х годов, была недостаточна для достижения требуемой точности определения параметров атмосферы Земли.
Появление системы глобальной спутниковой навигации GPS, включающей спутники с высокостабильными передатчиками, изменило ситуацию. Достоинства метода зондирования атмосферы Земли при помощи сигналов системы GPS состоят в следующем: 1) стабильность калибровок измерительной аппаратуры обеспечивается наличием атомных часов на корреспондирующих спутниках, 2) низкая стоимость приемника, 3) всепогодность метода (в частности, нечувствительность к облачности) и 4) глобальное покрытие (характерное для всех спутниковых методов)“.
Недостатком радиозатменного метода является низкое горизонтальное разрешение, характерное для всех лимбовых методов.
#ro #история
Открытые данные радиозатменных измерений
За последнее десятилетие радиозатменные измерения при помощи глобальных навигационных спутниковых систем приобрели решающее значение для улучшения качества прогноза погоды, космического мониторинга климата и исследований атмосферы. До недавнего времени данные подобных измерений хранились разрозненно, и найти их было достаточно трудно. NASA собрало их все вместе и поместило на Amazon Web Services (AWS), где данные находятся в открытом доступе.
Про то, что это за данные, каких именно спутников, и как их использовать — читайте здесь.
Данные Earth Radio Occultation в реестре открытых данных AWS: http://registry.opendata.aws/gnss-ro-opendata/
#ro #данные
За последнее десятилетие радиозатменные измерения при помощи глобальных навигационных спутниковых систем приобрели решающее значение для улучшения качества прогноза погоды, космического мониторинга климата и исследований атмосферы. До недавнего времени данные подобных измерений хранились разрозненно, и найти их было достаточно трудно. NASA собрало их все вместе и поместило на Amazon Web Services (AWS), где данные находятся в открытом доступе.
Про то, что это за данные, каких именно спутников, и как их использовать — читайте здесь.
Данные Earth Radio Occultation в реестре открытых данных AWS: http://registry.opendata.aws/gnss-ro-opendata/
#ro #данные