Спутник ДЗЗ
3.22K subscribers
2.49K photos
140 videos
191 files
2.23K links
Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot
加入频道
Forwarded from Ключ на старт
Не пропусти Всероссийский День физики 🇷🇺

Он пройдёт 17 сентября на базе ведущих технических университетов страны.

Участников ждут:
🔹 знакомство с вузами и инженерными профессиями
🔹 лекции от известных физиков
🔹 виртуальные экскурсии по научно-техническим центрам страны
🔹 физический диктант,
🔹 инженерные игры и многое другое

Всероссийский День физики проходит в рамках федерального проекта «Физика для всех» при поддержке Министерства просвещения РФ и Министерства науки и высшего образования РФ.

Мероприятие бесплатное, Участвовать можно очно или онлайн 👍🏻

Подробная информация, расписание и регистрация на сайте физикадлявсех.рф 💻

#КлючНаСтарт #ДеньФизики #КомандаБудущего #ДесятилетиеНауки
Глобальные данные о температуре поверхности Земли

Все, наверняка, уже знают, что нынешнее лето на планете выдалось самым жарким “за всю историю наблюдений”. Разберем, что это за температура и что понимается под “всей историей”, опираясь на данные, собранные NASA.

В NASA анализом глобальных изменений температуры земной поверхности занимается Goddard Institute for Space Studies (GISS). Текущие данные о температуре называются GISS Surface Temperature Analysis, версия 4 — GISTEMP v4.

GISTEMP собраны из данных о температуре приземного воздуха, полученных десятками тысяч метеорологических станций, а также данных о температуре поверхности моря, измеренных с помощью судовых и буйковых приборов. Эти исходные данные объединяются, с учетом расстояний между станциями по всему миру, и с поправками на влияние городского отопления, которое может исказить результаты расчетов.

В ходе анализа рассчитываются не абсолютные значения температуры, а температурные аномалии. Температурная аномалия показывает, насколько сильно температура отклонилась от базового среднего значения 1951–1980 годов.

На карте представлены аномалии глобальной температуры для июня, июля и августа 2023 года. Она показывает, насколько теплее или холоднее было на Земле по сравнению с базовым средним значением в период с 1951 по 1980 год. Отметим,что самые насыщенные красные аномалии превышают средние значения как минимум на 4°C.

На суше хорошо видны температурные аномалии на северо-западе Канады, усугубившие продолжающиеся там лесные пожары. Высокие температуры поверхности моря отчасти вызваны возвращением Эль-Ниньо.

На графике представлены летние метеорологические аномалии температуры (июнь–август) за каждый год, начиная с 1880 года. Как и раньше, аномалии рассчитываются относительно базового значения 1951–1980 годов. Более теплое, чем обычно, лето 2023 года продолжает долгосрочную тенденцию потепления.

Данные GISTEMP обновляются ежемесячно. Сами данные, методика их объединения и необходимые программы доступны для скачивания.

#данные #климат
Первый пуск ракеты Р-1

75 лет назад, 17 сентября 1948 г. с полигона Капустин Яр был осуществлен первый испытательный пуск ракеты Р-1. Ракета была собрана по восстановленным чертежам и отдельным деталям от немецкой трофейной ракеты “Фау-2”. Во время старта произошел отказ системы управления, и ракета, поднявшись на высоту более 1 км, отклонилась от расчетной траектории и упала в 12 км от места старта.

Всего в октябре-ноябре 1947 г. на полигоне Капустин Яр были выполнены 11 пусков ракет подобных ракет. По результатам этих пусков в конструкцию советской ракеты, которая получила обозначение Р-1 (8А11), были внесены усовершенствования. Для ракеты Р-1 был создан отечественный жидкостный ракетный двигатель РД-100 (8Д51). В качестве горючего применялся 75% раствор этилового спирта (4 тонны), окислитель – жидкий кислород (5 тонн). Также на ракете Р-1 использовалась инерциальная система наведения.

10 октября 1948 г. ракета Р-1 совершила первый успешный полет на дальность 288 км. Затем были выполнены еще девять испытательных пусков.

Главным конструктором ракеты Р-1 являлся С.П. Королев. Ракета имела следующие основные характеристики: длина с головной частью – 14,6 метра, диаметр – 1,65 метра, стартовая масса – 13,4 тонны, скорость полета ракеты – 1465 м/с, максимальная дальность полета – 270 км, мощность боевого заряда – 785 кг.

На основе боевой ракеты Р-1 были созданы геофизические ракеты Р-1А, Р-1Б, Р-1В, Р-1Д и Р-1Е. Они предназначались для геофизических, физических, астрофизических, химических и медико-биологических исследований верхних слоев атмосферы и ближнего космического пространства.

На снимке показана ракета Р-1Е на стартовой позиции (РГАНТД. Ф. 213. Оп. 1-1. Д. 51. Л. 7).

По материалам РГАНТД

#история
166 лет прошло с момента рождения основоположника космонавтики Константина Циолковского!

〰️17 сентября 1857 года в селе Ижевское родился «новый гражданин вселенной». Именно так своё появление на свет в будущем описал сам Константин Эдуардович. С детства он обладал необычайной тягой к знаниям и любопытством к неизвестному.

〰️Зимой 1868 его настигла скарлатина. Из-за перенесённой болезни совсем юный Циолковский потерял слух. Голоса теперь он слышал крайне слабо, из-за чего Константина отчислили из школы.

〰️Константин Эдуардович сам проводил много времени за учёбой и особенно любил черчение. У него была собственная мастерская, в которой он соорудил ветряную мельницу, астролябию, самодвижущуюся коляску и прочие механизмы, которым названия даже не находилось. Эти творения обнаружил отец, который решил, что сыну нужно продолжать обучение, и послал его в Москву. Однако Циолковский принял решение записаться в бесплатную библиотеку и не продолжать учёбу в Высшем техническом училище (МГТУ им. Баумана​).

Вернувшись в Киров, Константин Эдуардович стал частным преподавателем, и получалось у него это блестяще. Несмотря на свою глухоту, он экстерном сдал экзамены в Первой гимназии Рязани и отправился преподавать арифметику и геометрию в город Боровск в Калужской губернии.

〰️Попутно Циолковский продолжал работу над своими научными трудами. Результаты его исследований отмечали гении того времени: Менделеев, Сеченов, Столетов, Ковалевская и многие другие. Но позволить себе присоединиться к научному сообществу Константин не мог из-за нехватки денежных средств.

Но несмотря на все трудности, Константин Эдуардович Циолковский предсказал многие открытия космонавтики. Людям в начале XX века было сложно представить, что идеи Циолковского когда-нибудь станут реальностью.

〰️19 сентября 1935 года «Гражданин вселенной» скончался в возрасте 78 лет. Он так и не дожил до момента, когда «последняя мечта человечества» была осуществлена.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Разработчик миниатюрных спутников Open Cosmos привлек 50 миллионов долларов инвестиций

Компания Open Cosmos привлекла 50 млн. долларов инвестиций в рамках раунда серии B, которые предполагает использовать для расширения компании, создания более крупных спутников и группировок дистанционного зондирования Земли.

Open Cosmos базируется в Великобритании и имеет офисы в Испании и Португалии. Штат компании насчитывает 70 человек. На счету Open Cosmos 5 запущенных CubeSat’ов, один из которых (Menut), предназначен для наблюдения Земли. До марта следующего года компания планирует запустить еще пять CubeSat’ов 6U и 12U, также предназначенных для наблюдения Земли.

Полученное финансирование должно помочь компании развиваться на международном уровне, в том числе в Латинской Америке, на Ближнем Востоке и в Азиатско-Тихоокеанском регионе, а также расширить текущие предложения по спутникам — до CubeSat’ов 16U и микроспутников.

Финансирование также будет направлено на развитие проекта OpenConstellation, который компания называет "взаимной спутниковой инфраструктурой" (“mutualized satellite infrastructure”). В рамках OpenConstellation одни компании смогут делится возможностями своих спутников с другими. Предполагается, что группировка будет состоять из спутников, предоставляющих разнообразные типы данных различного спектрального состава (мульти- гиперспектральные, тепловые инфракрасные, микроволновые) и пространственного разрешения (от среднего до очень высокого). О времени развертывания группировки не сообщается.

Компания также разрабатывает платформу для анализа спутниковых данных под названием DataCosmos.
Картирование поверхностных водоемов и зон затопления с помощью данных мультиспектральных оптических спутниковых сенсоров

Хороший современный обзор:

Albertini C, Gioia A, Iacobellis V, Manfreda S. Detection of Surface Water and Floods with Multispectral Satellites. Remote Sensing. 2022; 14(23):6005. https://doi.org/10.3390/rs14236005

В целом, в задаче выделения поверхностных водоемов по-прежнему рулят Normalized Difference Water Index (NDWI), предложенный McFeeters’ом в 1996, и Modified Normalized Difference Water Index (MNDWI), предложенный Xu в 2005 году. Вместе с тем, интересно узнать, какие новые подходы предложены, и как новые индексы работают, в зависимости от типа почвенно-растительного покрова конкретной местности.

#вода #обзор #наводнение
V Российский симпозиум по наноспутникам RusNanoSat-2023 прошел с 6 по 8 сентября в Самаре, на базе Самарского национального исследовательского университета имени академика С.П. Королева

Тематика симпозиума

* Новые миссии и проекты наноспутников
* Применение группировок наноспутников для решения прикладных и научных задач
* Итоги и результаты прошлых и текущих миссий наноспутников
* Особенности проектирование наноспутников
* Особенности динамики движения наноспутников
* Управление и навигация наноспутников
* Бортовые системы наноспутников
* Перспективные технологии и их применение при создании наноспутников
* Научная аппаратура для наноспутников
* Проблемы запуска наноспутников на орбиту
* Наноспутники и образование

У симпозиума есть сайт, но тезисов или материалов докладов на нем нет(.

Некоторая информация о докладах есть на сайте Space-π — заметную часть докладов на симпозиуме как раз представляли партнеры и участники этого проекта. Но нас заинтересовал другой доклад, о нем — в следующем посте.

#конференции
MIDE – цифровая платформа для моделирования космических систем целевого назначения

Доклад посвящен опыту Факультета космических исследований МГУ и команды "Астродинамика" по созданию и использованию масштабируемой программной платформы комплексного моделирования космических систем — отечественному аналогу STK. Эта платформа называется MIDE — Missions Integrated Development Environment.

Презентацию доклада можно найти здесь.

Сайт команды “Астродинамика”: https://astro-dynamics.ru

В разделе Баллистический центр можно посмотреть примеры расчетов, выполненных с помощью MIDE.

Ознакомительную версию MIDE можно свободно скачать. Есть версии для Astra Linux и для Windows.

#софт
Авария при запуске Acadia 2

Сегодня, 19 сентября в 09:30 по МСК со стартовой позиции LC-1B космодрома Махия в Новой Зеландии был запланирован запуск ракеты-носителя Electron компании Rocket Lab.

На низкую околоземную орбиту предполагалось вывести Acadia 2 — второй радарный спутник нового поколения, принадлежащий компании Сapella Space. Первый спутник этого поколения был успешно запущен 23 августа этого года.

В Rocket Lab сообщили об аномалии, которая привела к прекращению миссии. В результате, спутник был потерян.

#capella
Классификация высокорослых и низкорослых сельскохозяйственных культур по данным Sentinel-2 и GEDI

Данные космического лидара NASA Global Ecosystem Dynamics Investigation (GEDI), изначально предназначенного для мониторинга лесов, дополненные оптическими снимками Sentinel-2, позволили создать качественные глобальные карты классификации сельскохозяйственных культур на высокорослые и низкорослые, с пространственным разрешением 10 метров. Высокорослые культуры — это, в частности, кукуруза и подсолнечник (высота примерно 2.5 метра), низкорослые — пшеница и ячмень (0.5–1 метр).

Применение спутниковых лидаров не всегда давало приемлемые результаты даже для измерений высоты леса. Среднеквадратичная ошибка определения высоты нередко составляла примерно 2–3 метра, так что пробовать силы на сельскохозяйственных культурах вроде бы не имело смысла. Авторы исследования все же попробовали, и у них получилось. Об измерении высоты речь, конечно, не идет, но различать высоко- и низкорослые сельскохозяйственные культуры оказалось вполне возможно.

Применялись снимки GEDI, полученные в период, когда сельскохозяйственные культуры достигают максимальной высоты. Для определения этих периодов понадобятся фенологические календари.

Данные космических лидаров, вроде GEDI, покрывают наблюдаемую поверхность “пятнами”, не образуя сплошного покрытия. По-видимому, максимальных результатов можно достичь, располагая границами сельскохозяйственных полей.

Отмечена систематическая недооценка площади высоких культур в регионах, где эти культуры имеют низкую биомассу. Скорее всего, лидар такие культуры просто не видит. Вероятно, проблемы должны возникать и при анализе полей малой площади.

Полученные результаты позволяют надеется обнаружить при помощи лидара уборку или полегание культуры, то есть события на поле, сопровождающиеся резким уменьшением высоты растительного покрова.

#лидар #sentinel2 #сельхоз
Микроволновые измерения запасов продуктивной влаги в почве: информация из 1977 года

Известно, что при помощи микроволновой или инфракрасной съемки определить влажность почвы можно лишь в тонком приповерхностном слое. Собственно, вот работа 1977 года, где об этом сообщают (курсив наш):

“<…> на длинах волн 0,8—3,0 см (X-диапазон) радиометрическим методом возможно определение поверхностной влажности, а на длинах волн 10—20 см (L- и S-диапазоны) определение влажности поверхностного слоя почвы толщиной 5—10 см. Переход при зондировании на длины волн свыше 20 см (L-диапазон) приводит к существенному уменьшению разрешающей способности метода, незначительно увеличивая толщину исследуемого поверхностного слоя почвы. Следовательно, непосредственно по измерениям радиоизлучения в микроволновом диапазоне нельзя определить влажность в метровом и даже в полуметровом слое, знание которой необходимо для агрогидрологических расчетов запасов продуктивной и полной влаги”.

Естественно, что для определения влажности в метровом слое почвы, предлагается поискать корреляционную связь между влажностью в приповерхностном слое и профилем влажности в метровом слое.

Эксперименты, проведенные в весенний период на агрометеостанциях Северного Казахстана, показали, что характер изменения влажности с глубиной соответствует среднему профилю наименьшей полевой влагоемкости для данного типа почв 1️⃣ (ниже).

“Таким образом, для расчета запасов продуктивной и полной влаги в метровом слое почвы можно воспользоваться двухпараметрической моделью профиля влажности, основанной на корреляции между профилем влажности и профилем наименьшей полевой влагоемкости. В качестве одного параметра использована влажность слоя 5–10 см <…>. Второй параметр в схеме — градиент среднего профиля наименьшей полевой влагоемкости для данного типа почв”.

Если считать, что дистанционное измерение влажности в приповерхностном слое — задача более-менее решенная, то для определения влажности в метровом слое почвы понадобится почвенная карта с высоким пространственном разрешением (десятки метров, что вполне доступно) и результаты измерений полевой влагоемкости для каждого класса почв (вот тут придется поработать). И тогда:

“Расчеты влагозапасов почвы в 100-сантиметровом слое, проведенные по 50 реальным профилям влажности, полученным во время эксперимента, показали, что средняя относительная ошибка при расчетах по двухпараметрической модели, предложенной нами, равна 13%, максимальная ошибка не превышает 35%. Такая точность вполне удовлетворительна для получения оперативных данных по влагозапасам в почве”.

#почва #радиометр