Спутник ДЗЗ
3.96K subscribers
3.1K photos
176 videos
222 files
2.85K links
Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot
加入频道
GeoAI: Искусственный интеллект для пространственных данных

GeoAIпакет Python для применения методов искусственного интеллекта в анализе и визуализации пространственных данных.

🤖 GeoAI содержит инструменты для обработки, анализа и визуализации пространственных данных с помощью передовых методов машинного обучения. Как сказано в документации: “Независимо от того, работаете ли вы со спутниковыми снимками, облаками точек лидара или векторными данными, GeoAI предлагает интуитивно понятные интерфейс для применения передовых моделей ИИ.”

📖 Документация GeoAI

Среди возможностей GeoAI:

📊 Визуализация пространственных данных

● Интерактивная многослойная визуализация векторных, растровых и облачных данных
● Настраиваемые стили и символика
● Возможности визуализации временных рядов данных

🛠 Подготовка и обработка данных

● Упрощенный доступ к спутниковым и аэрофотоснимкам Sentinel, Landsat, NAIP и другим открытым данных
● Инструменты для загрузки, создания мозаик и предварительной обработки данных дистанционного зондирования
● Автоматизированная генерация обучающих датасетов с чипами изображений (image chips) и соответствующими метками
● Утилиты преобразования векторных данных в растровые и наоборот, оптимизированные для рабочих процессов ИИ
● Методы дополнения (augmentation) данных, специфичные для пространственных данных
● Поддержка интеграции данных Overture Maps и других открытых данных для обучения и проверки

🖼 Сегментация изображений

● Интеграция с моделью Segment Anything Model (SAM) компании Meta для автоматического извлечения признаков
● Специализированные алгоритмы сегментации, оптимизированные для спутниковых и аэрофотоснимков
● Оптимизированные рабочие процессы для сегментации зданий, дорог, растительности и водных объектов
● Возможность экспорта в стандартные форматы геоданных: GeoJSON, Shapefile, GeoPackage, GeoParquet

🔍 Классификация изображений

● Предварительно обученные модели для классификации земного покрова и землепользования (land cover & land use)
● Утилиты трансферного обучения (transfer learning) для тонкой настройки моделей на основе собственных данных
● Поддержка разновременной классификации для обнаружения изменений (change detection)
● Инструменты оценки точности и валидации

🌍 Дополнительные возможности

● Анализ рельефа с извлечением признаков при помощи ИИ
● Классификация и сегментация облаков точек
● Обнаружение объектов на авиационных и спутниковых снимках
● Утилиты геопривязки для результатов ИИ-моделей

Пакет разработан профессором Q. Wu. Для него мы завели на канале именной хештег: #wu

📹 Руководства по GeoAI на YouTube

#python #wu #софт #ИИ
👍953🔥3