Спутник ДЗЗ
3.76K subscribers
2.86K photos
159 videos
210 files
2.62K links
Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot
加入频道
Курс “Spatial Data Management”

🔗 Сайт курса “Spatial Data Management” (https://geog-414.gishub.org/) (GEOG-414), который профессор Qiusheng Wu читает в Университете штата Теннесси, Ноксвилл.*

На курсе изучают основы Python для анализа пространственных данных, основы Google Earth Engine,** DuckDB и PostGIS.

Кроме полных материалов курса, на сайте есть лабораторные работы, а также идеи для итоговых проектов, защитой которых завершается освоение курса.

*Есть еще Университет штата Теннесси в Нашвилле — это совсем другой университет.

**Проф. Q. Wu известен как разработчик пакета geemap.

#python
Сжатие спутниковых снимков

📝 Пост, в котором Марк Литвинчик (Mark Litwintschik) исследует сжатие WebP на примере снимка со спутника SkySat. Марку удалось сжать изображение с 877 МБ до 30 МБ.

📸 На снимке экрана показано окно QGIS для экспорта растрового слоя в файл GeoTIFF со сжатием WebP (ПКМ → Экспорт → Сохранить как).

❗️ WebP поддерживает как сжатие без потерь, так и сжатие с потерями. По умолчанию (а именно так работал Марк), осуществляется сжатие с потерями (качество 75 %). Подробнее о настройках драйвера GDAL для WebP читайте здесь.

💡 Марк обещает протестировать AVIF — алгоритм сжатия, конкурирующий с WebP — как только тот будет поддерживаться QGIS.

#python #софт
Новости R

🔹 Коллеги из канала Наука и данные рассказали о прогнозировании временных рядов с помощью пакета nixtlar (https://nixtla.github.io/nixtlar/index.html). В нем используется TimeGPT — базовая модель (foundation model) для прогнозирования временных рядов и обнаружения аномалий. Изначально TimeGPT был разработан на Python, но теперь, с помощью nixtlar, доступен пользователям R.

🔹 Нашли в открытом доступе новую книгу по R на русском языке:

📖 Поздняков И. Анализ данных и статистика в R (https://pozdniakov.github.io/tidy_stats/)

#R #python #FM #книга
Пример работы с открытыми спутниковыми данными Wyvern

В феврале канадская компания Wyvern запустила программу открытых данных своих гиперспектральных 🛰 спутников Dragonette. Эти спутники находятся на орбитах высотой 517–550 км над и имеют обеспечивают пространственное разрешение в надире (GSD) — 5,3 м.

Сейчас доступны данные Dragonette-1 в видимом и ближнем инфракрасном диапазонах — Standard VNIR (23 канала) и Extended VNIR (31 канал).

🔗 В этом посте Марк Литвинчик (Mark Litwintschik) экспериментирует с общедоступными данными Wyvern.

📸 Художественное изображение космического аппарата Dragonette.

#софт #python #гиперспектр
openEO

Сейчас для автоматизированного сбора данных с портала Copernicus Data Space Ecosystem используется API openEO (https://openeo.org).

Основные элементы этого API можно посмотреть здесь.

Для использования API openEO есть готовые клиентские библиотеки на JavaScript, Python и 📸 R (библиотека openeo).

Кроме того, для пользователей не знакомых с программированием есть веб-редактор для openEO. Он поддерживает визуальное моделирование ваших алгоритмов и упрощенный доступ к рабочим процессам и провайдерам openEO на основе JavaScript.

При работе необходимо учитывать ограничения бесплатного доступа к данным — не более двух одновременных запросов.

#R #python #js #софт
Обнаружение объектов на снимках Maxar в пакете GeoDeep

В этом посте Марк Литвинчик (Mark Litwintschik) запускает встроенные в GeoDeep модели искусственного интеллекта на снимках Мьянмы и Бангкока (Таиланд), сделанных спутниками компании Maxar.

GeoDeepPython-пакет для обнаружения объектов на спутниковых снимках. Пакет насчитывает около 1000 строк кода и использует ONNX Runtime и Rasterio.

Ниже приведены готовые модели из состава GeoDeep. Назначение их ясно их названий:

• aerovision
• birds
• buildings
• cars
• planes
• roads
• trees
• trees_yolov9

Спойлер: сколько-нибудь вменяемые результаты показала только модель buildings.

#софт #python #ИИ
"Найди мне все лесопилки…"

Сэмюель Барретт (Samuel Barrett) показывает здесь и здесь как использовать предварительно вычисленные эмбеддинги ДЗЗ из базовой модели Клэя (Clay) на снимках NAIP для быстрой идентификации лесопилок в штатах Вашингтон и Орегон.

🛢 NAIP data embedded with Clay v1.5 (rev2)
🖥 Репозиторий кода на GitHub

Эксперимент показывает как эмбеддинги позволяют быстро отвечать на вопросы вроде "Что где находится?" в больших географических масштабах.

#ИИ #python